Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
\(1,\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow3x-6=4x+4\)
\(\Rightarrow3x-4x=4+6\)
\(\Rightarrow-x=10\Leftrightarrow x=-10\)
\(2,\frac{x-1}{3}=\frac{x+3}{5}\)
\(\Rightarrow5x-5=3x+9\)
\(\Rightarrow5x-3x=9+5\)
\(\Rightarrow2x=14\Leftrightarrow x=7\)
\(3,\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Rightarrow64x+96=72x-24\)
\(\Rightarrow72x-64x=24+96\)
\(\Rightarrow8x=120\)
\(\Rightarrow x=15\)
Câu a lập bảng xét dấu
b) \(3x-\left|x+15\right|=\frac{5}{4}\)
\(\Rightarrow\left|x+15\right|=3x-\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+15=3x-\frac{5}{4}\\x+15=-3x+\frac{5}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-2x=\frac{-64}{4}\\4x=\frac{-55}{4}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{-55}{16}\end{cases}}\)
\(\left|2x-1\right|-\left|x+\frac{1}{3}\right|=0\)
=> \(\left|2X-1\right|=\left|X+\frac{1}{3}\right|\)
=> \(2X-1=\pm\left(X+\frac{1}{3}\right)\)
\(TH1:2x-1=x+\frac{1}{3}\) \(TH2:2x-1=-\left(x+\frac{1}{3}\right)\)
=> \(2x-x=\frac{1}{3}+1\) => \(2x-1=-x-\frac{1}{3}\)
=>\(x=\frac{4}{3}\) => \(2x+x=-\frac{1}{3}+1\)
=> \(3x=-\frac{2}{3}=>x=-\frac{2}{9}\)