Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 12 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 64x3 - 64x2 + 3x = -1 + 5 + 1 - 27
<=> -112x2 + 15x = -22
<=> -112x2 + 15x + 22 = 0 (*) ( lại phải xài Delta :(( )
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-15+\sqrt{10081}}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Nghiệm xấu quá -..-
Bài làm:
Ta có: \(\left(4x-1\right)^3+\left(3-4x\right)\left(9+12x+16x^2\right)=\left(8x-1\right)\left(8x+1\right)-\left(3x-5\right)\)
\(\Leftrightarrow64x^3-48x^2+12x-1+27-64x^3-64x^2+1+3x-5=0\)
\(\Leftrightarrow15x+22=0\)
\(\Leftrightarrow15x=-22\)
\(\Rightarrow x=-\frac{22}{15}\)
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 - 64x2 + 3x - 4 = 0
<=> -112x2 + 15x + 22 = 0 (*)
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{10081}-15}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế -..-
Bạn nhân đa thức với đa thức
Theo bài ra, ta suy ra được:
32x^5 +1 -(32x^5 -1) =2
2 = 2
Vậy có vô số x thỏa mãn đề bài.
e: ta có: \(4x^2+4x-6=2\)
\(\Leftrightarrow4x^2+4x-8=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
f: Ta có: \(2x^2+7x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)