Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi
Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?
Đáp án D chứ sao nữa
Câu 2:
$y'=-3x^2+6x+(m-2)=0$
Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$
Hai điểm cực trị cùng dương khi:
\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)
Từ $(1);(2)\Rightarrow -1< m< 2$
Đáp án C.
Câu 2:
Để đths có 2 điểm cực trị thì trước tiên:
$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$
Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$
Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$
$\Leftrightarrow m^2-4< 0$
$\Leftrightarrow -2< m< 2$
Đáp án A.
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
3.
\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)
\(\Rightarrow y_{min}=y\left(1\right)=m-4\)
\(\Rightarrow m-4=0\Rightarrow m=4\)
4.
Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định
\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)
\(\Rightarrow m=\frac{41}{5}\)
Đáp án B
1.
\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến
\(m=y_{min}=y\left(0\right)=2\)
\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)
\(\Rightarrow M^2+m^2=\frac{41}{4}\)
2.
Hàm xác định trên \(\left[-2;2\right]\)
\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)
\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)
\(\Rightarrow N=-2;M=2\sqrt{2}\)
\(\Rightarrow M+2N=2\sqrt{2}-4\)
Lời giải:
Ta có: \(y=\frac{x^2-m^2+2m+1}{x-m}=x+m+\frac{2m+1}{x-m}\)
\(\Rightarrow y'=1-\frac{2m+1}{(x-m)^2}\)
Để hàm số đồng biến trên khoảng xác định của nó thì \(y\geq 0, \forall x\in \text{MXĐ}\)
\(\Leftrightarrow 1-\frac{2m+1}{(x-m)^2}\geq 0\)
\(\Leftrightarrow (x-m)^2-(2m+1)\geq 0\)
\(\Leftrightarrow x^2-2mx+(m^2-2m-1)\geq 0\)
Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi:
\(\Delta'=m^2-(m^2-2m-1)\leq 0\)
\(\Leftrightarrow m\leq \frac{-1}{2}\)
Đáp án D
3.
- Với \(m=1\Rightarrow f\left(x\right)=-9x\) nghịch biến trên R (ko thỏa mãn)
- Với \(m=-1\Rightarrow f\left(x\right)=9x\) đồng biến trên R (thỏa mãn)
- Với \(m\ne\pm1\)
\(f'\left(x\right)=6\left(m^2-1\right)x^2-9m\ge0;\forall x>1\)
TH1: \(\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)\le0\end{matrix}\right.\) \(\Rightarrow m< -1\)
TH2: \(\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-1>0\\m\left(m^2-1\right)>0\\\sqrt{\frac{3m}{2\left(m^2-1\right)}}\le1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\3m\le2m^2-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\2m^2-3m-2\ge0\end{matrix}\right.\)
\(\Rightarrow m\ge2\)
Vậy \(\left[{}\begin{matrix}m\le-1\\m\ge2\end{matrix}\right.\)
2.
\(\Leftrightarrow y'=2m-\frac{x+1}{\sqrt{x^2+2x+11}}\ge0;\forall x\in R\)
\(\Leftrightarrow2m\ge\frac{x+1}{\sqrt{x^2+2x+11}}\)
\(\Leftrightarrow m\ge\frac{x+1}{2\sqrt{x^2+2x+11}}\)
\(\Leftrightarrow m\ge\max\limits_Rf\left(x\right)\) với \(f\left(x\right)=\frac{x+1}{2\sqrt{x^2+2x+11}}\)
Ta có: \(f'\left(x\right)=\frac{5}{\sqrt{\left(x^2+2x+11\right)^3}}>0;\forall x\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\frac{x+1}{2\sqrt{x^2+2x+11}}=\frac{1}{2}\)
\(\Rightarrow f\left(x\right)< \frac{1}{2};\forall x\in R\)
\(\Rightarrow m\ge\frac{1}{2}\)
1.
Xét \(x^2-mx+m=0\) (1)
\(\Delta=m^2-4m\)
Hàm có đúng 1 tiệm cận đứng khi:
TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)
Th2: (1) có 1 nghiệm \(x=1\)
\(\Leftrightarrow1-m+m=0\left(ktm\right)\)
Vậy \(m\in\left\{0;4\right\}\)
2.
\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)
Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)
Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)
3.
\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)
\(\Rightarrow x=k\pi\)
\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)
\(\Rightarrow M=6\)
4.
\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\) và \(\left(1;+\infty\right)\)
5.
\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)
\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)