K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2016

p không tìm được đâu , 2 mũ mấy cũng không là số nguyên tố đâu

16 tháng 3 2016

chỉ có P=3 

dài lắm

3 tháng 4 2016

p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa.  Xét p=3 thõa

1 tháng 3 2017

\(a^2+a-p=0\)

\(\Rightarrow a\left(a+1\right)=p\)

Vì p là số nguyên tố => p chỉ có 2 ước nguyên là 1; p

Mà \(a\left(a+1\right)=p\) => a và a + 1 là các ước của p

=> a = 1 hoặc a + 1 = 1 => a = 1 hoặc a = 0

Thử lại : với a = 1 => 1(1 + 1) = 2 là số nguyên tố (tm)

             với a = 0 => 0(0 + 1) = 0 không là số nguyên tố (loại)

Vậy a = 1

15 tháng 1 2024

sos

31 tháng 7 2015

+Với p=2  ta có:p+8=10            là hợp số => không thỏa mãn

                        p+10=12

+Với p=3 ta có:p+8=11             là số nguyên tố=>thỏa mãn 

                       p+10=13

Với p>3 do p là số nguyên tố =>p=3k+1 hoặc 3k+2

Với p=3k+1 thì p+8=3k+9                Do 3k+9 chia hết cho 3 mà 3k+9>3-> 3k+9 là hợp số=> không thỏa mãn

                      p+10=3k+11

+Với p=3k+2  thì p+8 =3k+10

                          p+10=3k+12        Do 3k+12 chia hết cho 3 mà 3k+12>3->3k là hợp số=>không thoả mãn

Vậy p=3

31 tháng 7 2015

(+) Với p = 2 => p + 8 = 2 + 8 = 10 không  là số nguyên tố 

(+) p = 3 => p + 8 = 3 + 8 = 11 ; p + 10 = 3 + 10 = 13 là số nguyên tố 

(+) với p > 3  => p có dạng 3k + 1 (1)  và 3k + 2  (2)

       (1) với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3) chia hết cho 3 ( loại)

        (2) với p = 3k + 2 thì  p + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4) chia hết cho 3 ( loại)

VẬy chỉ có p = 3 thỏa mãn 

7 tháng 2 2016

do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài

7 tháng 2 2016

moi hok lop 6 thoi

7 tháng 8 2016

\(P=3n^3-7n^2+3n+6\)

\(=3n^3+2n^2-9n^2-6n+9n+6\)

\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)

\(=\left(3n+2\right)\left(n^2-3n+3\right)\)

để p là nguyên tố thì 3n+2 hoặc n2-3n+3  phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài) 

*3n+2=1=>n=-1/3

*n2-3n+3=1<=>n2-3n+2=0

\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)

                            \(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)

nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)

vậy n=1