K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

Ta có \(xy^2-\left(y-45\right)^2+2xy+x-220y+2024=0\)

<=> \(y^2\left(x-1\right)+2xy-130y+x-1=0\)

<=>\(y^2\left(x-1\right)+2y\left(x-65\right)+x-1=0\)

+, x=1

=> y=0

+\(x\ne1\)

Ta có \(\Delta'=\left(x-65\right)^2-\left(x-1\right)^2=64\left(66-2x\right)\)

Để phương trình có nghiệm nguyên thì

\(\Delta'\ge0\)và là số chính phương

Lại có 66-2x là số chẵn

\(x\le33,66-2x\in\left\{64,36,16,4\right\}\)

=> \(x\in\left\{15,25,31\right\}\)do \(x\ne1\)

x152531
y735/3,3/5
 NhậnNhậnLoại

Vậy \(\left(x,y\right)=\left(15,7\right);\left(25,3\right);\left(1,0\right)\)

22 tháng 5 2019

Ta có \(\left(x+y\right)^2=xy+3y-1\)

<=>\(x^2+1=-y^2-xy+3y\)

Thế vào phương trình 2 ta có

\(x+y=1+\frac{y}{-y^2-xy+3y}\)

<=> \(x+y=1-\frac{1}{x+y-3}\)

Đặt x+y=a

=> \(a=1-\frac{1}{a-3}\)<=> \(a^2-4a+4=0\)=> a=2

=> x+y=2

Thế vào 1 ta có

\(4=y\left(2-y\right)+3y-1\)=> \(y^2-5y+5=0\)=> \(\orbr{\begin{cases}y=\frac{5+\sqrt{5}}{2}\\y=\frac{5-\sqrt{5}}{2}\end{cases}}\)

Vậy \(\left(x,y\right)=\left(-\frac{1+\sqrt{5}}{2},\frac{5+\sqrt{5}}{2}\right),\left(\frac{-1+\sqrt{5}}{2},\frac{5-\sqrt{5}}{2}\right)\)

6 tháng 3 2022

\(pt\Leftrightarrow x^2-x+2x-2+2y^2-2xy^2+y-xy=1\\ \Leftrightarrow\left(1-x\right)\left(2y^2+y-x-2\right)=1\)

e tự xét 2 th ra

13 tháng 3 2018

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

1 tháng 2 2020

xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa 

7 tháng 12 2019

\(4x^2-7x^2=2022\)

\(\Leftrightarrow4x^2=2022+7y^2\)

Có: VT\(⋮4\)

=> VP\(⋮4\)

=> VP \(⋮2\)

=> 7y^2 \(⋮2\)

=> 7y^2 \(⋮4\)

=> 2022 \(⋮4\)( vô lý ) 

=> không tìm được x;y thỏa mãn

P/S: sai thì sửa hộ nhé

 
28 tháng 10 2019

Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ

28 tháng 10 2019

sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)

                                giải

Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)

\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)

Áp dụng bđt bunhiacopxki ta có:

\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)

Mà \(x,y,z\)nguyên dương

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)

Lấy (1) + (2) ta được:

\(M\ge2+2+2+\frac{1}{3}\)

\(\Rightarrow M\ge\frac{19}{3}\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z\)

20 tháng 3 2021

ĐKXĐ : x ≥ 1

<=> \(x^2\left(x-1\right)-x\sqrt{x-1}-2=0\)

Đặt \(x\sqrt{x-1}=t\)( t ≥ 0 )

pt <=> t2 - t - 2 = 0

<=> ( t + 1 )( t - 2 ) = 0

<=> t = -1 (ktm) hoặc t = 2 (tm)

=> \(x\sqrt{x-1}=2\)

<=> x2( x - 1 ) = 4 ( bình phương hai vế )

<=> x3 - x2 - 4 = 0

<=> x3 - 2x2 + x2 - 4 = 0

<=> x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0

<=> ( x - 2 )( x2 + x + 2 ) = 0

<=> x - 2 = 0 hoặc x2 + x + 2 = 0

+) x - 2 = 0 <=> x = 2 (tm)

+) x2 + x + 2 = 0

Δ = b2 - 4ac = 1 - 8 = -7

Δ < 0 => vô nghiệm

Vậy pt có nghiệm x = 2