K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Chọn C.

Phương pháp:

- Đặt t   =   log   cos x  và tìm điều kiện của t .

 

- Thay vào phương trình đã cho đưa về phương trình ẩn t .

- Biến đổi điều kiện bài toán về điều kiện của phương trình vừa có được và tìm m .

10 tháng 4 2019

Đáp án C

Ta có : PT <=> log2 |cos x| – 2mlog|cos x| – m2 + 4 = 0

Đặt t = log|cos x|;  t ∈ ( - ∞ ; 0 ]

Khi đó: t2 – 2mt – m2 + 4 = 0 (*)

PT đã cho vô nghiệm <= > (*) vô nghiệm hoặc có nghiệm dương.

18 tháng 4 2018

Đáp án C

18 tháng 3 2017




29 tháng 6 2018

Đáp án A

Điều kiện  x ≥ 2

Đặt  t = x + 2   t ≥ 0 ⇒ x = t 2 - 2

Khi đó phương trình tương đương

Từ bảng biến thiên ra suy ra phương trình có nghiệm thì  0 < m < 5 5 4 .

30 tháng 10 2017

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

15 tháng 12 2017

22 tháng 5 2017

Đáp án C

Phương pháp:

phương trình trở thành

=> Hàm số đồng biến trên khoảng [2;+∞)

Để phương trình (*) có nghiệm thì 2m ≥ 6 ⇔ m ≥ 3

3 tháng 4 2017