Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có : PT <=> log2 |cos x| – 2mlog|cos x| – m2 + 4 = 0
Đặt t = log|cos x|; t ∈ ( - ∞ ; 0 ]
Khi đó: t2 – 2mt – m2 + 4 = 0 (*)
PT đã cho vô nghiệm <= > (*) vô nghiệm hoặc có nghiệm dương.
Đáp án A
Điều kiện x ≥ 2
Đặt t = x + 2 t ≥ 0 ⇒ x = t 2 - 2
Khi đó phương trình tương đương
Từ bảng biến thiên ra suy ra phương trình có nghiệm thì 0 < m < 5 5 4 .
Đáp án B.
Đặt t = log2 x,
khi đó m + 1 log 2 2 x + 2 log 2 x + m - 2 = 0
⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).
Để phương trình (*) có hai nghiệm phân biệt
Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).
Vì 0 < x1 < 1 < x2 suy ra
Đáp án C
Phương pháp:
phương trình trở thành
=> Hàm số đồng biến trên khoảng [2;+∞)
Để phương trình (*) có nghiệm thì 2m ≥ 6 ⇔ m ≥ 3
Chọn C.
Phương pháp:
- Đặt t = log cos x và tìm điều kiện của t .
- Thay vào phương trình đã cho đưa về phương trình ẩn t .
- Biến đổi điều kiện bài toán về điều kiện của phương trình vừa có được và tìm m .