K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 10 2019

Để pt đã cho vô nghiệm thì:

\(1^2+\left(m-1\right)^2< \left(\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2< 4\)

\(\Rightarrow-2< m-1< 2\)

\(\Rightarrow-1< m< 3\)

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0 2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2) 3, Phương trình cos2x.sin5x+1=0 có...
Đọc tiếp

Gọi M,m tương ứng là GTLNvà GTNN của hàm số y=\(\frac{2cosx+1}{cosx-2}\). Khẳng định nào sau đây đúng

A.M+9m=0 B.9M-m=0 C.9M+m=0 D.M+m=0

2,Cho hàm số y=\(\frac{2kcosx+k+1}{cosx+sinx+2}\). GTLN của hàm số y là nhỏ nhất khi k thuộc khoảng

A.(0;\(\frac{1}{2}\)) B.(\(\frac{1}{3}\);\(\frac{3}{4}\)) C.(\(\frac{3}{4}\);\(\frac{4}{3}\)) D(\(\frac{3}{2}\);2)

3, Phương trình cos2x.sin5x+1=0 có mấy nghiệm thuộc đoạn \([\)\(\frac{-\pi}{2}\);2\(\pi\)]

4,Phương trình cos\(\frac{5x}{2}\).cos\(\frac{x}{2}\)-1=sin4x.sin2x có mấy nghiệm thuộc [-100\(\pi\);100\(\pi\)]

5, Phương trình 5+\(\sqrt{3}\) sinx(2cosx-3)=cosx(2cosx+3) có mấy nghiệm thuộc khoảng (0;10pi)

6, Gọi S là tập hợp các nghiệm thuộc khoảng (0;100pi) của phương trình (sin\(\frac{x}{2}\)+cos\(\frac{x}{2}\))\(^2\)+căn 3.cosx=3.Tính tổng phần tử S

7, Gọi x0 là nghiệm dương min của cos2x+\(\sqrt{3}\)sin2x+\(\sqrt{3}\)sĩn-cosx=2. Mệnh đề nào sau đây đứng

A.(0;pi/12) B.[pi/12;pi/6] C(pi/6;pi/3] D.(pi/3;pi/2]

8,Phương trình 48-\(\frac{1}{cos^4x}\)-\(\frac{2}{sin^2x}\)(1+cot2x.cotx)=0 có mấy nghiệm

9, GỌI S là tập hợp tất cả các giá trị nguyên của tham số m để pt 3\(\sqrt{sinx+cosx+2}\)+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))+m-1=0 có nghiệm .số phần tử của S là

9
NV
18 tháng 10 2020

1.

Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)

\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)

\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)

\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)

\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)

\(\Rightarrow9M+m=0\)

NV
18 tháng 10 2020

2.

\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)

\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)

\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)

\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)

\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)

\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)

\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)

\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)

Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)

Đáp án A

NV
12 tháng 8 2020

3.

Hàm trùng phương \(f\left(x\right)=ax^4+bx^2+c\) với \(a\ne0\) đồng biến trên \(\left(0;+\infty\right)\) khi và chỉ khi:

\(\left\{{}\begin{matrix}a>0\\b\ge0\end{matrix}\right.\) \(\Leftrightarrow m\ge0\)

Hoặc giải bt: \(y'=4x^3+2mx\ge0\) ;\(\forall x>0\)

\(\Leftrightarrow2x\left(x^2+m\right)\ge0\)

\(\Leftrightarrow x^2+m\ge0\)

\(\Leftrightarrow x^2\ge-m\)

\(\Leftrightarrow-m\le min\left(x^2\right)=0\Rightarrow m\ge0\)

NV
12 tháng 8 2020

1.

Giả sử tiếp tuyến d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2>0\)

\(\Rightarrow cos30^0=\frac{\sqrt{3}}{2}=\frac{\left|a-2b\right|}{\sqrt{\left(a^2+b^2\right)\left(1^2+\left(-2\right)^2\right)}}=\frac{\left|a-2b\right|}{\sqrt{5\left(a^2+b^2\right)}}\)

\(\Leftrightarrow4\left(a-2b\right)^2=15\left(a^2+b^2\right)\)

\(\Leftrightarrow11a^2+16ab-b^2=0\)

Nghiệm xấu quá nhìn muốn nản, bạn tự làm tiếp :)

2.

\(y'=cosx-2sinx+2m-5\)

Hàm số đồng biến trên TXĐ khi và chỉ khi \(y'\ge0\) ; \(\forall x\)

\(\Leftrightarrow cosx-2sinx+2m-5\ge0\) ;\(\forall x\)

\(\Leftrightarrow2m-5\ge2sinx-cosx\)

\(\Leftrightarrow2m-5\ge f\left(x\right)_{max}\) với \(f\left(x\right)=2sinx-cosx\)

Ta có: \(f\left(x\right)=2sinx-cosx=\sqrt{5}\left(\frac{2}{\sqrt{5}}sinx-\frac{1}{\sqrt{5}}cosx\right)=\sqrt{5}sin\left(x-a\right)\)

Với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{2}{\sqrt{5}}\)

\(\Rightarrow f\left(x\right)\le\sqrt{5}\Rightarrow2m-5\ge\sqrt{5}\Rightarrow m\ge\frac{5+\sqrt{5}}{2}\)