Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 113:7=16(dư 1)
=>để 113+x\(⋮\)7 thì x\(\inƯ\left(7\right)-1\)
b) 113:13=8(dư 9)
=> để 113+x\(⋮\)13 thì x\(\inƯ\left(13\right)-4\)
nếu sai bỏ qua cho ^^
Bài giải
a, Ta có : \(113+x\text{ }⋮\text{ }7\)
\(\Leftrightarrow\text{ }113+x\text{ }\inƯ\left(7\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
b, \(113+x\text{ }⋮\text{ }13\)
\(\Leftrightarrow\text{ }113+x\inƯ\left(13\right)\)
Ta có bảng :
\(113+x\) | \(-1\) | \(1\) | \(-13\) | \(13\) |
\(x\) | \(-114\) | \(-112\) | \(-120\) | \(-106\) |
\(\Rightarrow\text{ }x\in\text{ }\left\{-114\text{ ; }-112\text{ ; }-120\text{ ; }-106\right\}\)
gọi n \(\in\) N ta có :
a ) 113 - 70 = 43
70 : 7 \(\Rightarrow\)43 + 7n - 1 : 7
Vậy x = 7n - 1 ( kết quả trên còn đúng với cả số Z )
b) Tương tự
113 - 104 = 9
104 : 13 \(\Rightarrow\)9 + 13n + 4 : 13
x = 13n + 4
.
gọi n thuộc N ta có
a) 113 - 70 = 43
70 chia hết 7 => 43 + 7n - 1 chia hết 7
Vậy x = 7n -1
b ) 113 - 104 = 9
104 chia hết cho 13 => 9 + 13n + 4 chia hết 13
Vậy x = 13n + 4
Do 133 + x chia hết cho 7 ;133 + x chia hết cho 13
Suy ra 133 + x thuộc bội của 7 và 13
Do 7 ; 13 là số nguyên tố
Suy ra bội chung nhỏ nhất của 7 và 13 là : 13 . 7 =91
Suy ra 133 + x thuộc bội của 91
Suy ra 133 + x thuộc { 0; 91 ; 182 ; ..... }
Suy ra x thuộc { -113 ; -123 ; 51 ; .... }
a) 113 + n chia hết cho 7
=> 112 + 1 + n chia hết cho 7
Do 112 chia hết cho 7 => 1 + n chia hết cho 7
=> n = 7k + 6 (k thuộc N)
Vậy n = 7k + 6 (k thuộc N) thỏa mãn đề bài
b) 113 + n chia hết cho 13
=> 104 + 9 + n chia hết cho 13
Do 104 chia hết cho 13 => 9 + n chia hết cho 13
=> n = 13k + 4 (k thuộc N)
Vậy n = 13k + 4 (k thuộc N) thỏa mãn đề bài
Ủng hộ mk nha ^_-
a) Ta có: 113 + n chia hết cho 7
=> 112 + 1 + n chia hết cho 7
=> 1 + n chia hết cho 7
=> n = 7k + 6 (k \(\in\) N)
Vậy mọi số tự nhiên n có dạng n = 7k + 6 (k \(\in\) N) thì thỏa mãn
a)Để 12 + x chia hết cho 3 thì x phải chia hết cho . Vậy x là những số chia hết cho 3
Làm tương tự
a) Ta thấy : 113 : 7 dư 1
=> x : 7 dư 6
=> x =6k+1 với k >2
b) Ta thấy: 113 : 13 dư 9
=> x : 13 dư 4
=> x= 4k+1 với k> 4