Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin chào bạn Lương Thị Loan
chúng mik kết bạn nha
mik xin lỗi mik ko thể kết bạn với bạn được vì mik đã hết lượt rùi
Từ đề bài ta có thể suy ra n+5 chia hết cho 11, 17, 19 (vì 6+5 =11, 12+5=17, 14+5=19)
vậy n+5 sẽ là bội chung nhỏ nhất của 11, 17, 19
=>n+5 = 11.17.19 = 3553 => x = 3548
Vì n chia cho 11 dư 6 NHÌN XUỐNG DÒNG CUỐI RỒI HẴNG LÀM BÀI BẠN NHÉ
nên n=11q+6
suy n+5=11q+11 chia hết cho 11(1)
lại có:n chia cho 17 dư 12
nên n=17q+12
suy ra n+5=17q+17 chia hết cho 17(2)
Từ (1) và (2) suy ra n+5 thuộc BC(11;17)
Ta có BCNN(11;17)=11.17=187
Vì n+5 thuộc BC(11;17) nên n+5 thuộc B(187)
suy ra n+5 chia hết cho 187
suy ra n chia cho 187 dư 182
Vậy n chia cho 187 dư 182
Bạn nhớ thay các chữ như suy ra,chia hết cho,thuộc bằng ccác kí hiệu nhé
Gọi số tự nhiên cần tìm là : a,a\(\in\)N*
Khi đó ta có: a:2 dư 1
<=> a - 1 \(⋮\)2
<=>a - 1 + 2 \(⋮\) 2
<=> a + 1 \(⋮\) 2 (1)
Mặt khác : a chia 3 dư 2
<=> a - 2 chia hết 3
<=> a- 2 + 3 chia hết 3
<=> a + 1 chia hết 3 (2)
Từ (1),(2):
<=> a+ 1 \(\in\)BC (2,3)
Mà BCNN (2, 3) =6 ( vì 2,3 = 1)
<=> a + 1 \(\in\) { 6k / k \(\in\)N}
=> K= 1 => a + 1 =6
<=> a = 6 - 1
<=> a = 5 ( thỏa mãn )
Vậy số ta cần tìm là : 5
Gọi số cần tìm là a
a: 2 dư 1 => a+1 chia hết cho 2
a: 3 dư 2 => a+1 chia hết chi 3
=> a+1 thuộc BC(2,3)
Vì a nhỏ nất nên a+1 nhỏ nhất
=> a+1=BCNN(2,3)=6
=>a+1=6=>a=5
Vậy số cần tìm là 5
c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)
S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)
=780+54(5+52+53+54)+...........+52008(5+52+53+54)
=65*12 + 54*65*12 + .......... + 52008*65*12
=65*12(1+54+...+52008) chia hết cho 65
=> S chia hết cho 65
Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.
Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.
Vậy số tự nhiên đó là 598
\(\text{Gọi x là số phải tìm thì x + 2 chia hết cho 3, 4, 5, 6 nên x + 2 là bội chung của 3, 4, 5, 6.}\)
BCNN (3, 4, 5, 6) = 60 nên x + 2 = 60n.
Do đó x = 60n - 2 (n = 1, 2, 3, ...).
Ngoài ra x phải là số nhỏ nhất có tính chất trên và x phải chia hết cho 13.
Lần lượt cho n bằng 1, 2, 3, ... ta thấy đến n = 10 thì x = 598 chia hết cho 13.
Vậy số tự nhiên đó là 598
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Tôi đưa ra cách giải đơn giản theo phương pháp sau để em áp dụng:
Nếu a chia cho x dư r1, chia cho y dư r2, chia cho z dư r3.
Giả sử x < y < z
Thế thì em thêm vào a một số tự nhiên bằng B(z) + r3 sao cho
a + B(z) + r3 chia hết cho x, y, z
Khi đó a + B(z) + r3 là BC(x, y, z)
Tick nha
Gọi số cần tìm là n. Ta có:
+ n : 11 dư 6 => n - 6 chia hết cho 11 => n - 6 + 33 = n + 27 chia hết cho 11 (1)
+ n : 4 dư 1 => n - 1 chia hết cho 4 => n - 1 + 28 = n + 27 chia hết cho 4 (2)
+ n : 19 dư 11 => n - 11 chia hết cho 19 => n - 11 + 38 = n + 27 chia hết cho 19 (3)
Từ (1), (2) và (3) => n + 27 chia hết cho 11, 4, 19.
=> n + 27 thuộc BC( 11; 4; 19 )
BCNN( 11; 4; 19 ) = 836.
=> n + 27 = { 0; 836; 1672... }
=> n = { = -27; 809; 1645... }
Mặt khác n là số tự nhiên nhỏ nhất => n = 809.