K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

1) \(A=n^3+2n^2-3=\left(n-1\right)\left(n^2+3n+3\right)\)

Do \(n^2+3n+3>0\) nên \(n-1>0\Leftrightarrow n>1\)

Vậy với \(n>1\) thì A là hợp số

2) \(A=n^3+2n^2-3=2013\)

\(n^3+2n^2-2016=0\)\(\left(n-12\right)\left(n^2+14n+168\right)=0\)

\(n=12\) (Do \(n^2+14n+168>0\))

6 tháng 2 2019

\(A=n^3+2n^2-3=n^3-n^2+3n^2-3=n^2\left(n-1\right)+3\left(n-1\right)\left(n+1\right)\)

\(A=\left(n-1\right)\left(n^2+3n+3\right)\)

Vì A là hợp số nên \(A>0\)lại có \(n^2+3n+3\ge3>0\)nên \(n-1>0\Leftrightarrow n>1\)

Xét TH \(n=2\Rightarrow A=n^2+3n+3=13\)là SNT.

Với \(n>2\), A luôn có ít nhất 3 ước là \(1;n-1;A\)nên nó là hợp số.

Vậy để A là hợp số thì \(n>2\)

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

12 tháng 10 2021

cc