Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow2=x^2-2+\dfrac{1}{x^2}+x^2-xy+\dfrac{y^2}{4}+xy\)
\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\)
Vì : \(\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\)
\(\Rightarrow xy\le2\)
Vậy GTLN của xy=2 \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\Rightarrow y=2\\x=-1\Rightarrow y=-2\end{matrix}\right.\)
Áp dụng BĐT AM-GM ta có:
\(4=x^{2}+x^{2}+\frac{1}{x^{2}}+\frac{y^{2}}{4}\geq 4\sqrt[4]{\frac{x^{2}y^{2}}{4}}\)
\(\Leftrightarrow x^{2}y^{2}\leq 4 \Leftrightarrow xy\geq -2\)
Đẳng thức xảy ra khi \( x=1,y=-2\) hoặc \(x=-1, y=2\)
P/s:Xem lại xem đúng ko nhé
nếu chưa hoc AM-GM thì đi c/m BĐT cơ bản
\(a+b\ge2\sqrt{ab}\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)
Dấu "=" khi a=b áp dụng vào
Ta có
\(B=\dfrac{xy^2+y^2\left(y^2-x\right)+2}{x^2y^4+y^4+2x^2+2}\)
\(B=\dfrac{xy^2+y^4-xy^2+2}{y^4\left(x^2+1\right)+2\left(x^2+1\right)}\)
\(B=\dfrac{y^4+2}{\left(x^2+1\right)\left(y^4+2\right)}\)
B=\(\dfrac{1}{x^2+1}\)
Ta có:
x2\(\ge0\)
x2+1\(\ge1\)
\(\dfrac{1}{x^2+1}\le1\)
\(\Rightarrow B\le1\)
Dấu "=" xảy ra khi
x2=0
=>x=0
Vậy GTLN của B là 1 khi x=0
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)
Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)
=> \(4\ge xy+2\)=> \(2\ge xy\)
=> \(A=2016+xy\le2016+2=2018\)
=> Amin=2018
\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Ta có :
\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
\(\Rightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+\dfrac{y^2}{4}-xy\right)=2-xy\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)
Ta có:
\(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\)
\(\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow2-xy\ge0\forall x,y\)
\(\Rightarrow xy\le2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\x=\dfrac{y}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y=2x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y) nguyên thỏa mãn là : (1;2);(-1;-2)