Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gắt thế,IMO 2003
Đặt \(S=\frac{x^2}{2xy^2-y^3+1}\)
Xét \(b=1\Rightarrow S=\frac{x^2}{2x}=\frac{x}{2}\Rightarrow x=2k\) thỏa mãn
Xét \(b>1\) Đặt \(\frac{x^2}{2xy^2-y^3+1}=u\)
\(\Rightarrow x^2-2y^2ux+\left(y^3-1\right)u=0\)
Xét \(\Delta=\left(2y^2u\right)^2-4\left(b^3-1\right)u\) phải là số chính phương
Ta dễ dàng chứng minh được \(\left(2y^2u-y-1\right)^2< \Delta< \left(2y^2u-y+1\right)^2\)
\(\Rightarrow\Delta=\left(2y^2u-y\right)^2\Rightarrow y^2=4u\)
Đặt \(y=2t\Rightarrow x=t\left(h\right)x=8t^4-t\)
Vậy.........................
Ta có: 2xy+x+y=83\(\Rightarrow\)4xy+2x+2y=166\(\Rightarrow\)(2x+1) (2y+1)=167\(\Rightarrow\)x,y \(\in\)(0;83), (83;0)
Vì x,y nguyên dương nên ko tồn tại x,y
ta có:\(x+2xy+y=83\)
\(\Leftrightarrow x\left(1+2y\right)+\frac{1}{2}\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167=1.167=167.1\) (vì x,y>0)
với: \(\hept{\begin{cases}2x+1=1\\2y+1=167\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=83\end{cases}}}\)
với \(\hept{\begin{cases}2x+1=167\\2y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=83\\y=0\end{cases}}}\)
Vậy (x;y)={ (0;83) ; (83;0)}
Tìm cặp số nguyên dương x,y với x nhỏ nhất có 3 chữ số thỏa mãn:
\(8x^3-y^2-2xy=0\)
Giải dùm mình nha.
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.