K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

 voi p=2 ta có 4p+1 =9 là số chính phương nên thoã mãn

voi p=3 ta có 4p+1 =13 không là số chính phương nênloại

Với p>3 thì ví p là số chính phương nên p không chia hết cho 3 suy ra p=3k+1 hoặc p=3k+2 với k thuộc N*

Nếu  p=3k+1 thì 4p+1 = 12k+5 chia 3 dư 2 mà số chính pgương chia cho 3 chỉ dư 0 hoặc 1 nên loại

Nếu  p=3k+2 thì 4p+1 = 12k+9 chia  hết cho 3 dư 2 mà không chia hết cho 9 số chính phương chia hết cho 3 cthì phải chia hết cho 9 nên loại

Vậy p=2

9 tháng 4 2016

nhanh hk

9 tháng 4 2016

\(1a.\)

Ta có: \(n^4+4=\left(n^2\right)^2+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)

Vì  \(n^2+2n+2>n^2-2n+2\)  với mọi  \(n\in N\) 

nên để  \(n^4+4\)  là số nguyên tố thì  \(n^2-2n+2=1\)  \(\Leftrightarrow\)  \(\left(n-1\right)^2=0\)  \(\Leftrightarrow\)  \(n-1=0\)  \(\Leftrightarrow\)  \(n=1\)

Vậy, với  \(n=1\)  thì   \(n^4+4\)  là số nguyên tố

20 tháng 6 2023

Có:

\(\dfrac{S_{DAO}}{S_{ABO}}=\dfrac{DO}{BO}=\dfrac{S_{CDO}}{S_{BCO}}\) , tức là \(S_{DAO}.S_{BCO}=S_{ABO}.S_{CDO}\)

Do đó:

\(S_{ABO}.S_{BCO}.S_{CDO}.S_{DAO}=\left(S_{DAO}+S_{BCO}\right)^2\)

Vậy tích các số đo diện tích của các tam giác ABO, BCO, CDO, DAO là một số chính phương.

11 tháng 6 2018

xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?

11 tháng 6 2018

uk mk vt thiếu

4 tháng 2 2020

Do p là số nguyên tố, nên ta xét:

+ Xét p = 2

=> 7p + 1 = 7 . 2 + 1 = 14 + 1 = 15 (loại)

+ Xét p = 3

=> 7p + 1 = 7 . 3 + 1 = 21 + 1 = 22 (loại)

+ Xét p = 5

=> 7p + 1 = 7 . 5 + 1 = 35 + 1 = 36 = 62 (chọn)

+ Xét p > 5 => p có dạng 5k + 1; 5k + 2

+ Xét p = 5k + 1

=> 7p + 1 = 7 (5k + 1) + 1 = 35k + 7 + 1 = 35k + 8 (loại)

+ Xét p = 5k + 2

=> 7p + 1 = 7 (5k + 2) + 1 = 35k + 14 + 1 = 35k + 15 (loại)

                 Vậy p = 5