Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\)\(x^2+y^2+z^2=4\)
\(P=\frac{x^3}{x+3y}+\frac{y^3}{y+3z}+\frac{z^3}{z+3x}=\frac{x^4}{x^2+3xy}+\frac{y^4}{y^2+3yz}+\frac{z^4}{z^2+3zx}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}=\frac{4^2}{4+3.4}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{\sqrt{3}}\)
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=\frac{2\left(a-b\sqrt{5}\right)-3\left(a+b\sqrt{5}\right)}{\left(a+b\sqrt{5}\right)\left(a-b\sqrt{5}\right)}\)\(=\frac{-a-5b\sqrt{5}}{a^2-5b^2}=\frac{-a}{a^2-5b^2}+\frac{-5b\sqrt{5}}{a^2-5b^2}\).
Suy ra:
\(\hept{\begin{cases}\frac{-a}{a^2-5b^2}=-9\\-\frac{5b}{a^2-5b^2}=-20\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{9}{4}\\\frac{a}{a^2-5b^2}=-9\end{cases}}\)
\(\frac{a}{b}=\frac{9}{4}\Leftrightarrow\frac{a}{9}=\frac{b}{4}=k\)\(\Rightarrow\hept{\begin{cases}a=9k\\b=4k\end{cases}}\).
Suy ra \(\frac{a}{a^2-5b^2}=\frac{9k}{81k^2-5.16k^2}=\frac{9}{k}=-9\).
Suy ra \(k=-1\).
Vậy \(\hept{\begin{cases}a=9k\\b=4k\end{cases}\Leftrightarrow\hept{\begin{cases}a=-9\\b=-4\end{cases}}}\).
Tìm các số hữu tỉ a,b thỏa mãn \(\frac{5}{a+b\sqrt{2}}\)- \(\frac{4}{a-b\sqrt{2}}\)+18\(\sqrt{2}\)=3
\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)
\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)
\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)
\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
\(\Leftrightarrow\frac{2a-2b\sqrt{5}-3a-3b\sqrt{5}}{a^2-5b^2}=-9-20\sqrt{5}\)
\(\Leftrightarrow\frac{a+5b\sqrt{5}}{a^2-5b^2}=9+20\sqrt{5}\)
\(\Leftrightarrow\sqrt{5}\left(100b^2+5b-20a^2\right)=9a^2-a-45b^2\)
Ta nhận thây VT là sô vô tỷ còn VP là sô hữu tỷ.
\(\Rightarrow\hept{\begin{cases}100b^2+5b-20a^2=0\\9a^2-a-45b^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}a=9\\b=4\end{cases}\left(nhan\right)}\)
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
B1:
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)
\(\Leftrightarrow18a^2\sqrt{2}-36b^2\sqrt{2}-9b\sqrt{2}=3a^2-6b^2-a\)
\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)
Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)
Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\in Q\Rightarrow\sqrt{2}\in Q\)=> Vô lý vì \(\sqrt{2}\)là số vô tỉ.
Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=a\end{cases}\Leftrightarrow a=\frac{3}{2}b}\)
Thay \(a=\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)ta có:
\(3.\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-24b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)
Ta có: b=0(loại) ; b=2(thoả mãn) . Vậy a=3. KL:...
B2: \(GT\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\in Q\)( vì a,b thuộc Q)
KL:....
Sai đề ?
sr nha này : \(\frac{3}{a+\sqrt{3}}-\frac{2}{a-b\sqrt{3}}=7-20\sqrt{3}\)tìm a,b hữu tỉ