Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=1+2+2^2+2^3+2^4+2^5+...+2^{2004}+2^{2005}+2^{2006}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{2004}+2^{2005}+2^{2006}\right)\)
\(A=7+2^3\left(1+2+2^2\right)+...+2^{2004}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{2004}.7\)
\(A=7\left(1+2^3+...+2^{2004}\right)\) chia hết cho 7
b)\(2^{2006}=2^{2004}.2^2=\left(2^6\right)^{334}.4=64^{334}.4\)
Mặt khác: \(64\equiv1\left(mod7\right)\Rightarrow64^{334}\equiv1\left(mod7\right)\Rightarrow64^{334}.4\equiv4\left(mod7\right)\)
=>22006 chia 7 dư 4
Đặt S=1+2+2^2+..........+2^2019
Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có 3 số hạng và thừa 1 số hạng như sau
S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)
S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)
S=1+2.7+2^4.7+.....+2^2017.7
S=1+7(2+2^4+2^2017) chia 7 dư 1
Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1
\(2^3\equiv1\left(mod7\right)\)
\(\Rightarrow\left(2^3\right)^{668}.2^2\equiv1^{668}.2^2\left(mod7\right)\)
\(\Rightarrow2^{2006}\equiv4\left(mod7\right)\)
-Vậy: \(2^{2006}\) chia 7 dư 4