Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n-6}{n-1}\in Z\Leftrightarrow n-6⋮n-1\)
\(\Leftrightarrow n-1-5⋮n-1\)
mà \(n-1⋮n-1\Leftrightarrow-5⋮n-1\)
\(\Leftrightarrow n-1\in U\left(-5\right)=\left(1;-1;5;-5\right)\)
\(\Leftrightarrow n\in\left(2;0;6;-4\right)\)
hãy k nếu bạn thấy đây là câu trả lời đúng :)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(a)\) Để A là một phân số thì \(n-3\ne0\) \(\Leftrightarrow\) \(n\ne3\)
\(b)\)Thay \(n=-2\) vào A ta được :
\(A=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)
Vậy ...
bn phải ghi cách lm ra lun chứ ko là thầy mik cx cho 0 lun
p/s: cái này ko liên quan đến bài
Ta có để D nguyên
=>n-6 chia hết cho n-1
=>(n-1)+1-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
Mà n-1 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 thuộc Ư(5)={1;5;-1;-5}
=>n thuộc {2;6;0;-4}
M = \(\dfrac{3n+19}{n-1}\)
M \(\in\)N* ⇔ 3n + 19 ⋮ n - 1
⇔ 3n - 3 + 22 ⋮ n - 1
⇔ 3( n -1) + 22 ⋮ n - 1
⇔ 22 ⋮ n - 1
⇔ n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}
⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}
Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}
b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1
Ta có: \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được:
3n + 19 - (3n - 3) ⋮ d
⇒ 3n + 19 - 3n + 3 ⋮ d
⇒ 22 ⋮ d
Ư(22) = { - 22; -11; -2; -1; 1; 2; 22}
⇒ d \(\in\) {1; 2; 11; 22}
nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22
nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11
Vậy để phân số M tối giản thì
n \(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |