Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bài toán phụ:
Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) với a,b,c khác 0
Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
=> đpcm
Áp dụng vào:
a) Ta có: \(U_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{1}{1}+\frac{1}{n^2}+\frac{1}{\left[-\left(n+1\right)\right]^2}}\)
\(=\left|1+\frac{1}{n}-\frac{1}{n+1}\right|\) là số hữu tỉ vì n là số tự nhiên khác 0
b) Áp dụng công thức tự tính ra nhé
hahaha bọn mày ơi
vào trang chủ của : Edward Newgate đê
hắn bảo ta trẻ trâu chẳng lẽ hắn lớn trâu chắc :))