K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

 Câu trả lời hay nhất:  Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

:D

10 tháng 8 2018

 2m+2n=2m+n.

 <=> 2^m = 2^(m + n) - 2^n 

<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

​chúc bạn hok tốt

10 tháng 8 2018

mình ko hiểu bài của bạn lắm

22 tháng 8 2017

a)
x2 - 4x + 3 = x2 - x - 3x + 3
= x(x - 1) - 3(x - 1) = (x -1)(x - 3)
b)
x2 + 5x + 4 = x2 + 4x + x + 4
= x(x + 4) + (x + 4)
= (x + 4)(x + 1)

18 tháng 2 2019

b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n

Đặt \(m=n+k\left(k>0,k\inℤ\right)\)

Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)

\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)

Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.

Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)

Suy ra \(m=k+n=1+8=9\)

Vậy n = 8 ; m = 9

18 tháng 2 2019

a)2^m-2^m*2^n+2^n-1=-1  

(2^m-1)(2^n-1)=1  

do m,n là số tự nhiên nên

2^m-1 và 2^n-1 là ước dương của 1  

hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1

12 tháng 4 2018

Ta có: \(2^m-2^n=256\)

\(\Rightarrow2^n.\frac{2^m}{2^n}-2^n=256\)

VÌ 2m - 2n = 256

=> 2m > 2n 

=> m > n

\(\Rightarrow2^n.\left(2^{m-n}-1\right)=256\)

\(\Rightarrow2^n.\left(2^{m-n}-1\right)=2^8.1\)

VÌ 2m-n - 1 luôn là số lẻ

=> 2m-n - 1 = 1

và 2n = 28

=> n = 8 ( thỏa mãn )

=> m = 9 ( thỏa mãn )

Vậy: m = 9 và n = 8

8 tháng 7 2018

có : 

5+5^2+5^3+....+5^100 

=(5+5^2 )+(5^3+5^4 )+...+(5^99+5^100 ) 

=5(5+1)+5^3(5+1)+...+5^99(5+1) 

=5.6+...+5^99.6 

=6.(5+53+...+599 ) 

=> chia hết cho 6

=> đcpcm

8 tháng 7 2018

Bài 2: 

2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

22 tháng 4 2018

Tim cac so nguyen duong m,n sao cho : 2^m + 2^n = 2^m+n? | Yahoo Hỏi & Đáp