K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)

\(=64+12\left(m-1\right)\)

=64+12m-12

=12m+52

a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì 

\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)

b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

loading...  loading...  

26 tháng 4 2021

giải dùm với Ạ.

27 tháng 4 2021

m đâu bạn ? 

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

12 tháng 8 2021

\(=>\Delta=\left[-\left(2m+3\right)\right]^2-4\left(m^2+2m+2\right)\)

\(=4m^2+12m+9-4m^2-8m-8=4m+1\)

pt có 2 nghiệm pb \(< =>4m+1>0< =>m>-\dfrac{1}{4}\)

vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m+3\\x1x2=m^2+2m+2\end{matrix}\right.\)

\(\left(x1+x2\right)^2=15< =>\left(2m+3\right)^2=15\)

\(< =>4m^2+12m-6=0\)

\(ac< 0=>\) pt có 2 nghiệm phân biệt

\(=>\left[{}\begin{matrix}m1=\dfrac{-12+\sqrt{240}}{2.4}\left(tm\right)\\m2=\dfrac{-12-\sqrt{240}}{2.4}\left(loai\right)\end{matrix}\right.\)

12 tháng 8 2021

Thêm hai fan girl chứ gì căng em :>

23 tháng 7 2021

còn cái nịt

NV
3 tháng 5 2021

a. Bạn tự giải

b. 

Pt có 2 nghiệm phân biệt khi:

\(\Delta'=\left(m-3\right)^2-m^2>0\)

\(\Leftrightarrow-6m+9>0\)

\(\Leftrightarrow m< \dfrac{3}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2\end{matrix}\right.\)