Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.
Ta có (III) đúng vì
Khi đó
Vậy hàm số liên tục tại x = 1.
Câu 1: đáp án C đúng (đáp án A và B hiển nhiên sai, đáp án D chỉ đúng khi a không âm)
Câu 2: (I) sai, vì với \(x< -1\) hàm ko xác định nên ko liên tục
(II) đúng do tính chất hàm sin
(III) đúng do \(\lim\limits_{x\rightarrow1}\frac{\left|x\right|}{x}=\frac{\left|1\right|}{1}=f\left(1\right)\)
Vậy đáp án D đúng
Chọn D.
Ta có (I) đúng vì f(x) = x5 – x2 + 1 là hàm đa thức nên liên tục trên R..
Ta có (III) đúng vì liên tục trên (2; +∞) và nên hàm số liên tục trên [2; +∞)
(!!) sai vì hàm số gián đoạn tại các điểm hàm số không xác định.
Chọn C.
Với ta có hàm số liên tục trên khoảng và , (1).
Với ta có và nên hàm số liên tục tại , (2)
Từ (1) và (2) ta có hàm số liên tục trên R.
Chọn B.
Dễ thấy (I) sai ( với x không thuộc tập xác định thì tại điểm đó hàm số gián đoạn)
Khẳng định (II) là lí thuyết.
Hàm số: liên tục trên khoảng (-3; 3). Liên tục phải tại 3 và liên tục trái tại -3.
Nên liên tục trên đoạn [-3; 3].
+) Ta có (I) đúng vì f ( x ) = x 5 - x 2 + 1 là hàm đa thức nên liên tục trên R
+) Ta có (III) đúng vì liên tục trên (2;+∞) và nên hàm số liên tục trên [2;+∞).
+) (II) sai vì trên khoảng ( -1, 1)hàm số đã cho không xác định nên hàm số không liên tục trên khoảng đó.
Chọn D
Đáp án C
Tập xác định: D = R \ { 1 }
lim x → 1 x - 1 x - 1 = lim x → 1 1 x + 1 = 1 2
Hàm số không xác định tại x= 1. Nên hàm số gián đoạn tại x=1.
Chọn C.
Tập xác định : D = R\ {1}
Hàm số không xác định tại x = 1 Nên hàm số gián đoạn tại x = 1.
- Tập xác định: D = R/ {1}.
- Hàm số không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Chọn C.
- Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.
- Ta có (III) đúng vì
- Khi đó:
- Vậy hàm số
liên tục tại x = 1.
- (I) Sai vì với x < -1 thì hàm số đã cho không xác định nên tại các điểm x 0 < - 1 thì hàm số đã cho không liên tục.
Chọn D.