Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm hai số tự nhiên, biết rằng tổng của chúng là 1636. Nếu lấy số lớn chia cho số nhỏ thì được thương là 3 và số dư là 196.
Giải:
Vì số lớn chia cho số bé được 3 nên số lớn gấp 3 lần số bé
Số bé là :
( 1636 - 196 ) : ( 3 +1 ) = 360
Số lớn là :
1636 - 360 = 1276
Đáp số : Số bé là 360
Số lớn là 1276
Gọi hai số cần tìm là a,b
Theo đề, ta có:
a+b=1006 và a=2b+124
=>a+b=1006 và a-2b=124
=>a=712 và b=294
Gọi x là số lớn, y là số bé. ĐK : x>y và 0<x,y<1006
Vì tổng của 2 số này bằng 1006 nên : x+y=1006 (*)
Mà nếu lấy số lớn chia cho số nhỏ thì đc thương là 2 và số dư là 124 nên ta có: x= 2y + 124 .
Thay vào (*) ta đc: y+2y+124 =1006<=>3y = 882=>y=882/3 = 294
=>x=1006-294 =712
Vậy....................
Gọi số lớn là x , số nhỏ là y ( x , y ∈ N* ) ; x > 124.
Vì tổng hai số bằng 1006 nên ta có: x + y = 1006 .
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình:
Vậy ..........
Gọi số lớn là x, số nhỏ là y \(\left(x,y\inℕ^∗\right);x,y>124\)
Tổng hai số bằng 1006 nên ta có: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình :
\(\hept{\begin{cases}x+y=1006\\x=2y+124\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=1006\\x-2y=124\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-\left(x-2y\right)=882\\x+y=1006\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3y=882\\x+y=1006\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=294\\x=712\end{cases}}\)
Vậy hai số tự nhiên phải tìm là 712 và 294
Gọi số lớn là x, số nhỏ là y (a, y ∈ N*); x > 124. Ta có: Tổng bằng 1006 nên được: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có điều kiện là y > 124 và có phương trình: x = 2y + 124
Ta có hệ phương trình:
Vậy hai số tự nhiên phải tìm là 712 và 294.
Nếu lấy số lớn chia cho số bé thì được 2 dư 124 => Số lớn gấp số bé 2 lần và 124 đơn vị .
=> Số bé là :
( 1006 - 124 ) : ( 2 + 1 ) = 294
Số lớn là :
294 x 2 + 124 = 712
Đáp số : 712 và 294
Gọi số lớn là x, số nhỏ là y (x, y ∈ N*); x,y > 124.
Tổng hai số bằng 1006 nên ta có: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình:
Vậy hai số tự nhiên phải tìm là 712 và 294.
Chú ý : Số bị chia = số chia. thương + số dư
Gọi số lớn là x, số nhỏ là y (x, y ∈ N*); x,y > 124.
Tổng hai số bằng 1006 nên ta có: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.
Ta có hệ phương trình:
Vậy hai số tự nhiên phải tìm là 712 và 294.
Chú ý : Số bị chia = số chia. thương + số dư
Kiến thức áp dụng
Giải bài toán bằng cách lập hệ phương trình:
Bước 1: Lập hệ phương trình
- Chọn các ẩn số và đặt điều kiện thích hợp
- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn
- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.
- Từ các phương trình vừa lập rút ra được hệ phương trình.
Bước 2: Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).
Bước 3: Đối chiếu nghiệm với điều kiện và kết luận.
Gọi số lơn là x, số nhỏ là y.
Ta có: Tổng bằng 1006 nên được: x + y = 1006
Số lớn chia số nhỏ được thương là 2, số dư là 124 nên được:
x = 2y + 124
Điều kiện y > 124.
Ta có hệ phương trình: ⇔
⇔ ⇔ ⇔
Vậy hai số tự nhiên phải tìm là 712 và 294.
gọi số lớn là x số nhỏ là y(2014>x>y>0)
ta có x+y=2014 và x=y+14<=>x-y=14
ta được bài toán tìm ẩn biết tổng và hiệu của chúng
=>x=(2014+14):2=1014(nhận)
=>y=2014-1014=1000(nhận)
vậy 2 số đó là 1014 và 1000
giải
tổng còn lại là:
1462-102=1360
số nhỏ là:
1360:(3+1)x1=340
số lớn là:
1360:(3+1)x3+102=1122
Đ/S: 340 ; 1122
Gọi số nhỏ là x ( x > 102 ; x là số tự nhiên )
Số lớn chia số nhỏ được thương là 3 và và số dư là 102 nên số lớn là: 3x + 102
Theo bài ra tổng của hai số là 1462 nên ta có phương trình:
x + 3x + 102 = 1462
<=> 4x = 1360
<=> x=340
Số lớn là: 1122
Vậy:...