K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Answer:

Ta có đề ra: x > 0

Áp dụng BĐT Cô-si

\(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}\)

\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge2\sqrt{18}\)

\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge2.3\)

\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge6\)

Dấu " = " xảy ra khi: \(\frac{x}{2}=\frac{18}{x}\Leftrightarrow x^2=36\Leftrightarrow x=6\)

Vậy giá trị nhỏ nhất của y = 6 khi x = 6

Mình áp dụng luôn Cô - si cho các số ta được

a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)

b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)

c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)

h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)

g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)

5 tháng 2 2020

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm 

\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)

Cộng theo từng vế 

\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)

\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow1\le x+y+z\)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)

Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Áp dụng bất đẳng thức cộng mẫu số :

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)

Vậy GTNN của \(A=\frac{1}{2}\)

Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

Chúc bạn học tốt !!!

5 tháng 2 2020

Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)

=> \(x+y+z\ge1\)

Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x = y = z =1/3

Vậy min A = 1/2 <=> x = y = z = 1/3

15 tháng 5 2019

Kĩ thuật cô si ngược ý

17 tháng 12 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)

17 tháng 12 2019

shitbo

Chứng minh ra chứ ghi mỗi thế sao đc e 

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

$\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{(\frac{1}{2})^2}=16$

$\frac{1}{4xy}+64xy\geq 8$

$\frac{5}{4xy}\geq \frac{5}{(x+y)^2}\geq \frac{5}{(\frac{1}{2})^2}=20$

Cộng theo vế:

$\Rightarrow P\geq 44$

Vậy $P_{\min}=44$ khi $x=y=\frac{1}{4}$

14 tháng 8 2020

Có:     \(x^3+8+8\ge12x\)

VÀ:     \(y^3+27+27\ge27y\)             (LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ)

VÀ:   \(\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\)

=>     \(\hept{\begin{cases}\frac{x^3}{8}+2\ge\frac{3x}{2}\\\frac{y^3}{27}+2\ge y\\\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\end{cases}}\)

CỘNG LẦN LƯỢT 3 BĐT TRÊN LẠI TA ĐƯỢC: 

=>     \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge\frac{3x}{2}+y+\frac{xy}{2}\)

MÀ:     \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\)

=>      \(\frac{3x}{2}+y+\frac{xy}{2}=9\)

=>     \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge9\)

=>       \(\frac{x^3}{8}+\frac{y^3}{27}\ge2\)

=>      \(\frac{27x^3+8y^3}{216}\ge2\)

=>       \(27x^3+8y^3\ge2.216=432\)

DẤU "=" XẢY RA <=>    \(x=2;y=3\)

VẬY P MIN = 432 <=>    x = 2;  y = 3.

9 tháng 8 2019

Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Áp dụng ta có :

\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)

\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)

\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)

Cộng theo vế của 3 bđt ta được :

\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)

Khi đó :

+) \(a+b+c=2017\)

+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)

\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)

\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)

Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)

\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)

\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)

16 tháng 8 2019

ghê nhờ:) Mà viết kĩ lại giúp em chỗ:

\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+...\right)=\frac{1}{2\sqrt{2}}\left(\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right)\).

Em ko hiểu lắm, tại sao lại có dấu = ở đây được nhỉ?