Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\)
Cộng theo từng vế
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}\)
\(\Rightarrow1\le\frac{2\left(x+y+z\right)}{2}\)
\(\Rightarrow1\le x+y+z\)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\left(1\right)\)
Ta có : \(A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Áp dụng bất đẳng thức cộng mẫu số :
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)
\(\Rightarrow A=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{x+y+z}{2}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{1}{2}\le\frac{x+y+z}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(\Rightarrow\frac{1}{2}\le\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
Vậy GTNN của \(A=\frac{1}{2}\)
Dấu " = " xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Chúc bạn học tốt !!!
Ta có: \(1=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\)
=> \(x+y+z\ge1\)
Có: \(A\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = y = z =1/3
Vậy min A = 1/2 <=> x = y = z = 1/3
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{(\frac{1}{2})^2}=16$
$\frac{1}{4xy}+64xy\geq 8$
$\frac{5}{4xy}\geq \frac{5}{(x+y)^2}\geq \frac{5}{(\frac{1}{2})^2}=20$
Cộng theo vế:
$\Rightarrow P\geq 44$
Vậy $P_{\min}=44$ khi $x=y=\frac{1}{4}$
Có: \(x^3+8+8\ge12x\)
VÀ: \(y^3+27+27\ge27y\) (LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ)
VÀ: \(\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\)
=> \(\hept{\begin{cases}\frac{x^3}{8}+2\ge\frac{3x}{2}\\\frac{y^3}{27}+2\ge y\\\frac{x^3}{8}+\frac{y^3}{27}+1\ge\frac{xy}{2}\end{cases}}\)
CỘNG LẦN LƯỢT 3 BĐT TRÊN LẠI TA ĐƯỢC:
=> \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge\frac{3x}{2}+y+\frac{xy}{2}\)
MÀ: \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\)
=> \(\frac{3x}{2}+y+\frac{xy}{2}=9\)
=> \(\frac{2x^3}{8}+\frac{2y^3}{27}+5\ge9\)
=> \(\frac{x^3}{8}+\frac{y^3}{27}\ge2\)
=> \(\frac{27x^3+8y^3}{216}\ge2\)
=> \(27x^3+8y^3\ge2.216=432\)
DẤU "=" XẢY RA <=> \(x=2;y=3\)
VẬY P MIN = 432 <=> x = 2; y = 3.
Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Áp dụng ta có :
\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)
\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)
\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Cộng theo vế của 3 bđt ta được :
\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)
Khi đó :
+) \(a+b+c=2017\)
+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)
\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)
\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)
Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)
\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)
Answer:
Ta có đề ra: x > 0
Áp dụng BĐT Cô-si
\(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}\)
\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge2\sqrt{18}\)
\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge2.3\)
\(\Leftrightarrow\frac{x}{2}+\frac{18}{x}\ge6\)
Dấu " = " xảy ra khi: \(\frac{x}{2}=\frac{18}{x}\Leftrightarrow x^2=36\Leftrightarrow x=6\)
Vậy giá trị nhỏ nhất của y = 6 khi x = 6