Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)
Ta có \(\left|x-3\right|\ge0\)với mọi giá trị của x
\(\left|x\right|\ge0\)với mọi giá trị của x
\(\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|+9\ge9\)với mọi giá trị của x
Vậy GTNN của A là 9.
Ta có M= |x+2|+|x-9|+|x+1945|
= |x+1945|+|x+2|+|9-x|
Vì |x+1945|>= x+1945
|x-2|>= 0
|9-x|>= 9-x
nên M=|x+1945|+|x-2|+|9-x| >= x+1945+0+9-x =1954
Suy ra min M =1954 (=) x=2
Vậy min M =1954 (=) x=2
Vì \(\left(x^2-9\right)^2\ge0\)\(\forall x\inℝ\); \(\left|y-2\right|\ge0\)\(\forall y\inℝ\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|\text{}\ge0\)\(\forall x,y\inℝ\)\(\Rightarrow\)\(\left(x^2-9\right)^2+\left|y-2\right|\text{}+10\ge10\)\(\forall x,y\inℝ\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=9\\y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=2\end{cases}}\).
Vậy GTNN Q = 10 khi y = 2 và x = ±3
a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5
dau "=" xay ra khi va chi khi (x+2)(3-x)>=0
=>x>=-2 hoặc x<=3
vạy GTNN cua bieu thuc la 5 khi va chi khi ...
b)cau b tuong tu
c) vi |x+1|>=0
|y+2|>=0
=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0
=>x=-1 va y=-2
vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2
Có : |x-5| + |x-13| = |x-5| + |13-x| >= |x-5+13-x| = 8
Lại có : |x-9| >= 0
=> B >= 0+8 = 8
Dấu "=" xảy ra <=> (x-5).(13-x) >=0 và x-9=0 <=> x=9
Vậy GTNN của B = 8 <=> x=9
Tk mk nha