K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Giá trị nhỏ nhất của A là 0

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

Ta thấy:

$(7x-5y)^{2018}\geq 0, \forall x,y$

$(3x-2z)^{2020}\geq 0, \forall x,z$

$(xy+yz+xz-4500)^{2022}\geq 0, \forall x,y,z$

Do đó để tổng $(7x-5y)^{2018}+(3x-2z)^{2020}+(xy+yz+xz-4500)^{2022}=0$ thì:

$(7x-5y)^{2018}=(3x-2z)^{2020}=(xy+yz+xz-4500)^{2022}=0$

$\Leftrightarrow$ \(\left\{\begin{matrix} 7x=5y(1)\\ 3x=2z(2)\\ xy+yz+xz=4500(3)\end{matrix}\right.\)

Từ $(1);(2)\Rightarrow y=\frac{7}{5}x; z=\frac{3}{2}x$

Thay vào $(3)$:

$x.\frac{7}{5}x+\frac{7}{5}x.\frac{3}{2}x+x.\frac{3}{2}x=4500$

$\Leftrightarrow x^2=900\Rightarrow x=\pm 30$

Nếu $x=30\Rightarrow y=42; z=45$

Nếu $x=-30\Rightarrow y=-42; z=-45$

12 tháng 1 2020

!

27 tháng 4 2017

Với mọi giá trị của \(x;y;z\in R\) ta có:

\(\left|7x-5y\right|\ge0;\left|2z-3x\right|\ge0;\left|xy+yz+zx-500\right|\ge0\)

\(\Rightarrow\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-500\right|\ge0\)

\(\Rightarrow\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-500\right|+2016\ge2016\)

Hay \(A\ge2016\) với mọi giá trị của \(x;y;z\in R\)

Để A=2016 thì \(\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-500\right|+2016=2016\)

\(\Leftrightarrow\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-500\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|7x-5y\right|=0\\\left|2z-3x\right|=0\\\left|xy+yz+zx-500\right|=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}7x-5y=0\\2z-3x=0\\xy+yz+zx-500=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=5y\\2z=3x\\xy+yz+zx=500\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}21x=15y=14z\\xy+yz+zx=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21x}{630}=\dfrac{15y}{630}=\dfrac{14z}{630}\\xy+yz+zx=500\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{30}=\dfrac{y}{42}=\dfrac{z}{45}\\xy+yz+zx=500\left(2\right)\end{matrix}\right.\)

Đặt \(\dfrac{x}{30}=\dfrac{y}{42}=\dfrac{z}{45}=k\left(k>0\right)\Rightarrow x=30k;y=42k;z=45k\)(1)

Thay(1) vào (2) ta có:

\(30k.42k+42k.45k+45k.30k=500\)

\(\Rightarrow1260k^2+1890k^2+1350k^2=500\)

\(\Rightarrow\left(1260+1890+1350\right)k^2=500\)

\(\Rightarrow4500k^2=500\Rightarrow k^2=\dfrac{1}{9}\Rightarrow k=\pm\dfrac{1}{3}\)

Vì k>0 nên \(k=\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{1}{3}.30=10;y=\dfrac{1}{3}.42=14;z=\dfrac{1}{3}.45=15\)

Vậy giá trị nhỏ nhất của biểu thức A là 2016 đạt được khi và chỉ khi x=10; y=14; z=15

Chúc bạn học tốt nha!!

27 tháng 4 2017

Nhật LinhVõ Đông Anh Tuấnsoyeon_Tiểubàng giải

Silver bullet Hoàng Thị Ngọc AnhPhương An

5 tháng 6 2020

Em cảm ơn cj

5 tháng 6 2020

Hàn Thất Chị? Ko có chi~

24 tháng 11 2019

Ta có : (7x - 5y)2018 + (3x - 2z)2020 + (xy + yz + xz - 4500)2018 = 0

Ta có : \(\hept{\begin{cases}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+xz-4500\right)^{2018}\ge0\end{cases}}\)

 \(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+xz-4500\right)^{2018}\ge0\)

Dấu bằng xảy ra <=> 

\(\begin{cases}7x=5y\\3x=2z\\xy+yz+xz=4500\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+xz=4500\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+xz=4500\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\x+y+z=4500\end{cases}}\)

Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\)

=> xy + yz + xz = 4500

<=> 10k.14k + 14k.15k + 10k.15k = 4500

=> 140.k2 + 210.k2 + 150.k2 = 4500

=> k2.(140 + 210 + 150) = 4500

=> k2 . 500 = 4500

=> k2 = 9

=> k = \(\pm3\)

Nếu k = 3

=> \(\hept{\begin{cases}x=30\\y=42\\z=45\end{cases}}\)

Nếu k = - 3

=> \(\hept{\begin{cases}x=-30\\y=-42\\z=-45\end{cases}}\)

22 tháng 12 2017

\(\dfrac{x}{10}=\dfrac{y}{14}=\dfrac{z}{15}=t\)

\(10.14.t^2+14.15.t^2+10.15.t^2=-2000\) < 0 loai

Vay ko co gt nao .....