K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

a) \(A=\left|x+2\right|+\left|x-3\right|\)

\(A=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

\(\Rightarrow A\ge5\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)

\(\Leftrightarrow-2\le x\le3\)

Vậy .............................

21 tháng 10 2019

                                          bạn có cần gấp ko   

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

1 tháng 11 2019

Về nhà lm tiếp h sắp chậm học rồi pp nhá.

undefined

1 tháng 11 2019

1.

b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)

Ta có:

\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)

\(\Rightarrow B=42+\left|x+18\right|\ge42\)

\(\Rightarrow MIN_B=42\) khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)

Vậy \(MIN_B=42\) khi \(x=-18.\)

3.

b) \(\left|x-3\right|-\left|2x+1\right|=0\)

\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)

Chúc bạn học tốt!

8 tháng 6 2016

bạn dùng BĐT |a|+|b|>=|a+b|

7 tháng 7 2017

có 2 cách : 

cách 1:lập bảng xét dấu 

cách 2: áp dụng công thức :|a|+|b|>=|a+b|

16 tháng 7 2015

Nguyễn Nam Cao nói thế là ko được

17 tháng 10 2017

ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10

dấu "=" xảy ra khi (x+3)(7-x)>=0

giải ra ta đc:  -3<=x<=7,

lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)

=> A>=10+0+8=18 khi x=2,5