K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

x,y€0;1]

(x-1)(y-1)≥0

xy-(x+y)+1≥0

3xy-3(x+y)+3≥0:; -2(x+y)+3≥0

(x+y)≤3/2

x+y=3xy=>9(xy)^2-4(xy)≥0=> xy≥4/9

=>(x+y)€[4/3;3/2]

P=x^2+y^2-4xy=(x+y)^2-6xy=(x+y)^2-2(x+y)=[(x+y-1]^2-1

Pmin=(4/3-1)^2-1=1/9-1=-8/9

khi x+y=4 /3; xy=4/9

x=y=2/3

Pmax=(3/2-1)^2-1=1/4-1=-3/4

khi x or y =1

(x,y)=(1,1/2);(1/2;1)

20 tháng 5 2018

\(P=x^2+y^2-4xy\)

\(P=\left(x+y\right)^2-2xy-4xy\)

\(P=\left(3xy\right)^2-6xy\)

\(P=\left(3xy\right)^2-2.3xy.1+1-1\)

\(P=\left(3xy-1\right)^2-1\ge-1\)

dấu \("="\) xảy ra \(\Leftrightarrow3xy-1=0\Leftrightarrow xy=\dfrac{1}{3}\)

vậy MIN \(P=-1\Leftrightarrow xy=\dfrac{1}{3}\)

26 tháng 7 2019

\(x^2+\left(m-2\right)x-8=0\)

\(\Delta=b^2-4ac=\left(m-2\right)^2-4.1.\left(-8\right)=\left(m-2\right)^2+32\)

Vì \(\left(m-2\right)^2\ge0\forall m\)

\(\Rightarrow\left(m-2\right)^2+32\ge32>0\forall m\)

Vậy phương trình luôn có hai nghiệm phân biệt với mọi m

Theo định lí vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=2-m\\x_1x_2=\frac{c}{a}=-8\end{cases}}\Rightarrow x_2=\frac{-8}{x_1}\)

Theo bài ra ta có:\(A=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\frac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\frac{16}{x_1^2}\right)\le68-4.8=36\)

Dấu "=" xảy ra <=> \(x_1=\pm2\)

+Với  \(x_1=2\Rightarrow m=4\)

+Với \(x_1=-2\Rightarrow m=0\)

Vậy \(A=\left(x_1^2-1\right)\left(x_2^2-4\right)\)đạt GTLN là 36 \(\Leftrightarrow m=0;m=4\)

20 tháng 6 2016

\(0< x\le y\le2\) nha

20 tháng 6 2016

theo đk đề =>Pmax=0

hình như đề sai

25 tháng 8 2016

ko bít,tự làm

22 tháng 8 2016

sử dụng kẹp , đánh giá

1 tháng 6 2015

+)  Áp dụng BĐT Bu nhia có:

(x + y)2 = (x .1 + y .1)2 \(\le\) (x2 + y2). (12 + 12

=> 1\(\le\)  2.(x2 + y2) => x2 + y2 \(\ge\) 1/2 

Min A = 1/2 khi x  = y = 1/2

+) A = x2 + y2 = (x+y)2 - 2xy \(\le\)  (x+y) = 1 (Vì x; y \(\ge\) 0 và  x+y=1 )

=> Max A = 1 khi x.y = 0 <=> x = 0 hoặc y = 0

Vậy Max A = 1 khi x = 0; y = 1 hoặc x = 1; y = 0