Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right)cosx-1=0\), \(\forall x\in R\)
\(\left(cos2x-sin2x\right)^2+2\left(sin3x-sinx\right).cosx-1\)
\(=2sin^2\left(2x-\frac{\pi}{4}\right)+4cos2x.sinx.cosx-1\)
\(=1-cos\left(4x-\frac{\pi}{2}\right)+2sin2x.cos2x-1\)
\(=-cos\left(\frac{\pi}{2}-4x\right)+sin4x\)
\(=-sin4x+sin4x=0\)
\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+3\)
Do \(sin\left(2x+\dfrac{\pi}{4}\right)\le1\Rightarrow y\le3+\sqrt{2}\)
\(\Rightarrow a=3;b=1\Rightarrow a+b=\)
3/
\(\frac{sin2x-sinx}{1-cosx+cos2x}=\frac{2sinxcosx-sinx}{1-cosx+2cos^2x-1}=\frac{sinx\left(2cosx-1\right)}{cosx\left(2cosx-1\right)}=\frac{sinx}{cosx}=tanx\)
4/
\(\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\left(\frac{sinx+\frac{1}{tanx}}{1+sinxtanx}\right)^{2014}=\left(\frac{sinxtanx+1}{tanx\left(sinxtanx+1\right)}\right)^{2014}\)
\(=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}=\frac{sin^{2014}x+\frac{1}{tan^{2014}x}}{1+\left(sinx.tanx\right)^{2014}}=\frac{\left(sinxtanx\right)^{2014}+1}{tan^{2014}x\left[\left(sinxtanx\right)^{2014}+1\right]}\)
\(=\frac{1}{tan^{2014}x}=\left(\frac{1}{tanx}\right)^{2014}=cot^{2014}x\)
\(\Rightarrow\left(\frac{sinx+cotx}{1+sinx.tanx}\right)^{2014}=\frac{sin^{2014}x+cot^{2014}x}{1+\left(sinx.tanx\right)^{2014}}\)
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)
\(M=sin^2x+cos^2x+2sinx.cosx+cos^2x-sin^2x\)
\(=\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)\)
\(=\left(sinx+cosx\right)\left(sinx+cosx+cosx-sinx\right)\)
\(=2cosx\left(sinx+cosx\right)\)
\(=2\sqrt{2}cosx.cos\left(x-\frac{\pi}{4}\right)\)
\(A=\frac{1-sinx-1+2sin^2x}{2sinx.cosx-cosx}=\frac{sinx\left(2sinx-1\right)}{cosx\left(2sinx-1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(C=\frac{sina.cosa\left(tana-cota\right)}{sina.cosa\left(tana+cota\right)}+cos2a=\frac{sin^2a-cos^2a}{sin^2a+cos^2a}+cos2a\)
\(=-cos2a+cos2a=0\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)
\(\frac{sin^2x+cos^2x+2sinx.cosx}{sinx+cosx}-\left(1-tan^2\frac{x}{2}\right).cos^2\frac{x}{2}\)
\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\)
\(=sinx+cosx-cosx=sinx\)
\(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2+\left(\frac{1}{2}+\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\left(\frac{1}{2}-\frac{1}{2}sin2x\right)^2\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x+\frac{1}{4}-\frac{1}{2}sin2x+\frac{1}{4}sin^22x\)
\(=\frac{1}{4}-\frac{1}{2}\left(cos2x+sin2x\right)+\frac{1}{4}\left(cos^22x+sin^22x\right)\)
\(=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)