Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)
\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)
2.
a.
\(y=cos^22x+3cos2x+3\)
\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)
\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)
b.
Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)
\(\Rightarrow-5\le a\le5\)
\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)
\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)
\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)
a.
\(\Leftrightarrow\left(1-sin^2x\right)\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)
\(\Leftrightarrow cos^2x\left(1+sin^2x\right)-\frac{5}{3}cos^4x=0\)
\(\Leftrightarrow cos^2x\left(3+3sin^2x-5cos^2x\right)=0\)
\(\Leftrightarrow cos^2x\left(3+\frac{3}{2}-\frac{3}{2}cos2x-\frac{5}{2}-\frac{5}{2}cos2x\right)=0\)
\(\Leftrightarrow cos^2x\left(2-4cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
a)bung hằng đẳng thức số 3 ra còn 5/3cos^4(x) giữ lại
Sau đó (1-sin^2(x)) là cos^2x sau đó rút nhân tử chung là cos^2(x) ra ta được
cos^2(x)(1+sin^2(x)-5/3cos^2(x))=0
Cho từng vế = 0 rr giải
b)rút sin x ra nhưng giữ thg cos2x lại rr rút nhân tử chung là cos2x ta đc
cos2x(1-sinx)=0
Cho từng vế =0 rr giải
c)chém 4cos^2(x) ở hai vế hai bên thì chỉ còn
cos3x+6cosx=0 <=> 4cos^3(x)+3cosx=0
Bấm máy tìm cosx
\(y=1-cos^2x-6cosx+1=-cos^2x-6cosx+2\)
\(y=-cos^2x-6cosx-5+7\)
\(y=7-\left(cosx+1\right)\left(cosx+5\right)\)
Do \(cosx\ge-1\Rightarrow\left\{{}\begin{matrix}cosx+1\ge0\\cosx+5>0\end{matrix}\right.\)
\(\Rightarrow\left(cosx+1\right)\left(cosx+5\right)\ge0\)
\(\Rightarrow7-\left(cosx+1\right)\left(cosx+5\right)\le7-0=7\)
\(\Rightarrow y_{max}=7\) khi \(cosx=-1\Leftrightarrow x=\pi+k2\pi\)