K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
7 tháng 7 2021

\(f\left(x\right)=4x+\frac{3}{\left(x+1\right)^2}=2x+2+2x+2+\frac{3}{\left(x+1\right)^2}-4\ge3\sqrt[3]{\left(2x+2\right)^2.\frac{3}{\left(x+1\right)^2}}-4\)

\(=3\sqrt[3]{48}-4\)

Dấu \(=\)khi \(2x+2=\frac{3}{\left(x+1\right)^2}\Leftrightarrow\left(x+1\right)^3=\frac{3}{2}\Leftrightarrow x=\sqrt[3]{\frac{3}{2}}-1\).

DD
7 tháng 7 2021

\(f\left(x\right)=3x+\frac{2}{\left(2x+1\right)^2}=\frac{3}{4}\left(2x+1\right)+\frac{3}{4}\left(2x+1\right)+\frac{2}{\left(2x+1\right)^2}-\frac{3}{2}\)

\(\ge3\sqrt[3]{\left[\frac{3}{4}\left(2x+1\right)\right]^2.\frac{2}{\left(2x+1\right)^2}}-\frac{3}{2}=\frac{3}{2}\sqrt[3]{9}-\frac{3}{2}\)

Dấu \(=\)khi \(\frac{3}{4}\left(2x+1\right)=\frac{2}{\left(2x+1\right)^2}\Leftrightarrow\left(2x+1\right)^3=\frac{8}{3}\Leftrightarrow x=\frac{1}{\sqrt[3]{3}}-\frac{1}{2}\).

2 tháng 12 2019

blabla..

14 tháng 1 2020

f(x) = x3 +3/x = x3 + 1/x +1/x +1/x 

cô si 4 số làm mất x là xong

30 tháng 10 2016

1/ Đề đúng phải là \(3x^2+2y^2\) có giá trị nhỏ nhất nhé.

Áp dụng BĐT BCS , ta có

\(1=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left[\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2\right]\left(2x^2+3y^2\right)\)

\(\Rightarrow2x^2+3y^2\ge\frac{1}{5}\). Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}x}{\sqrt{2}}=\frac{\sqrt{3}y}{\sqrt{3}}\\2x+3y=1\end{cases}\) \(\Leftrightarrow x=y=\frac{1}{5}\)

Vậy \(3x^2+2y^2\) có giá trị nhỏ nhất bằng 1/5 khi x = y = 1/5

30 tháng 10 2016

2/ Áp dụng bđt AM-GM dạng mẫu số ta được

\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\)

\(\Rightarrow x+y\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{6}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{\sqrt{2}}{x}=\frac{\sqrt{3}}{y}\\\frac{2}{x}+\frac{3}{y}=6\end{cases}\) \(\Rightarrow\begin{cases}x=\frac{2+\sqrt{6}}{6}\\y=\frac{3+\sqrt{6}}{6}\end{cases}\)

Vậy ......................................

8 tháng 7 2021

\(P\left(x\right)=3x^2-\left[3f\left(x\right)+1\right]x+3-f\left(x\right)=0\left(1\right)\)

Phương trình (1) có nghiệm thuộc \(\left(0;\frac{2}{3}\right)\) khi:

\(\hept{\begin{cases}\Delta=9f^2\left(x\right)+18f\left(x\right)-35\ge0\\P\left(0\right)=3-f\left(x\right)>0\\P\left(\frac{2}{3}\right)=\frac{11}{3}-3f\left(x\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\le\frac{-3-2\sqrt{11}}{3}\left(h\right)f\left(x\right)\ge\frac{-3+2\sqrt{11}}{3}\\f\left(x\right)< 3\\f\left(x\right)< \frac{11}{9}\end{cases}}}\)

\(\Rightarrow f\left(x\right)\in(-\infty;\frac{-3-2\sqrt{11}}{3}]\)U\([\frac{-3+2\sqrt{11}}{3};\frac{11}{9})\)

Dễ thấy \(f\left(x\right)>0\forall x\in\left(0;\frac{2}{3}\right)\). Suy ra \(\frac{-3+2\sqrt{11}}{3}\le f\left(x\right)< \frac{11}{9}\)

Vậy \(minf\left(x\right)=\frac{-3+2\sqrt{11}}{3}\), đạt được khi \(x=\frac{-1+\sqrt{11}}{3}.\)