K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

11 tháng 10 2020

Cảm ơn bn nhiều nhé!

\(B=\left(x-3\right)^2+\left(x-11\right)^2\ge0\)

\(MinB=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-11=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=3\\x=11\end{cases}}\)

6 tháng 8 2016

C = (x + 1).(x - 2).(x - 3).(x - 6)

= [(x + 1)(x - 6)][(x - 2)(x - 3)]

= (x2 - 5x - 6)(x2 - 5x + 6)

Đặt x2 - 5x = t, ta có: 

C = (t - 6)(t + 6) = t2 - 36

Vì t2 lớn hơn hoặc bằng 0 => t2 - 36 lớn hơn hoặc bằng -36

Dấu "=" xảy ra khi t2 = 0 => t = 0 => x2 - 5x = 0 => x(x - 5) = 0 => x = 0 hoặc x = 5

Vậy Min C = -36 tại x = 0 hoặc 5

24 tháng 7 2018

a) Sửa đề \(A=25x^2+3y^2-10x+11\)

\(A=25x^2-10x+1+3y^2+10\)

\(A=\left(5x-1\right)^2+3y^2+10\)

\(\left(5x-1\right)^2\ge0\) với mọi x

\(3y^2\ge0\) với mọi y

\(\Rightarrow\left(5x-1\right)^2+3y^2\ge0\) với mọi x,y

\(\Rightarrow\left(5x-1\right)^2+3y^2+10\ge10\)

Amin = 10

\(\Leftrightarrow5x-1=0\)\(3y^2=0\)

\(\Rightarrow5x=1\)\(y^2=0\)

\(\Rightarrow x=\dfrac{1}{5}\)\(y=0\)

Vậy Amin = 10 <=> x = 1/5 và y = 0

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(\Rightarrow B=4x^2-4x+1+x^2+4x+4\)

\(\Rightarrow B=5x^2+5\)

\(5x^2\ge0\) với mọi x

\(\Rightarrow5x^2+5\ge5\)

=> Bmin = 5

<=> 5x2 = 0

=> x2 = 0

=> x = 0

Vậy Bmin = 5 <=> x = 0

c) \(C=\left(x-3\right)^2+\left(x-11\right)^2\)

\(C=x^2-6x+9+x^2-22x+121\)

\(C=2x^2-28x+130\)

\(C=2\left(x^2-14x+65\right)\)

\(C=2\left(x^2-2.x.7+7^2+16\right)\)

\(C=2\left(x-7\right)^2+16.2\)

\(C=2\left(x-7\right)^2+32\)

\(2\left(x-7\right)^2\ge0\) với mọi x

=> \(2\left(x-7\right)^2+32\ge32\)

=> Cmin = 32

<=> x - 7 = 0 => x = 7

Vậy Cmin = 32 <=> x = 7

22 tháng 8 2015

C=[(x+1)(x-6)][(x-2)(x-3)]

=(x2-5x-6)(x2-5x+6)

=(x2-5x)2-36>=-36

GTNN cua C=-36 tai x2-5x=0=>x(x-5)=0=>x=0 hoac x=5

18 tháng 6 2016

B=(x-3)2+(x-11)2

  =x2-6x+9+x2-22x+121

  =2x2-28x+130

  =2(x2-14x+65)

  =2(x2-2.7x+72-72+65)

  =2[(x-7)2-49+65]

  =2(x-7)2+32

=> vì 2(x-7)2 >= 0 

=>2(x-7)2+32 >= 32

=> GTNN của B=32. Khi x=7

12 tháng 7 2018

\(A=x^2+3x+7\)

\(A=x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+7\)

\(A=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+7\)

\(A=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\)

Nhận xét: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=\frac{-3}{2}\)

Vậy \(minA=\frac{19}{4}\Leftrightarrow x=\frac{-3}{2}\)

Các câu khác lm tương tự nhé, lần sau đừng đưa nhiều câu cùng một lúc lên thế này, đưa từng câu một thôi thì bn sẽ có câu tl nhanh hơn đấy

12 tháng 7 2018

Uk.Mk nhớ rồi!

27 tháng 11 2017

Ta có 

A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2

=>MIN A=2 khi và chỉ khi x-3=0 hay x=3

B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1

=>MIN B=1 khi và chỉ khi x-10=0 hay x=10

27 tháng 11 2017

làm nốt hộ mình con C đi

18 tháng 5 2017

BÀi 1

D = 4x - 10 - x2= - (x2 - 4x +10) = - (x - 2 )- 6

Vì  - (x - 2 ) \(\le0\)nên - (x - 2 )- 6 \(\le-6< 0\)

Vậy D = 4x - 10 - x2 luôn âm (dpcm)

12 tháng 8 2018

a) \(A=x^2-2x+2=\left(x^2-2x+1\right)+1=\left(x-1\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi x = 1

b) \(B=x^2-4x+y^2-8y+6\)

    \(B=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14\)

    \(B=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = 2; y = 4

12 tháng 8 2018

a, A = x2 - 2x + 2

       =(x2 -2x + 1) +1

       =(x-1)+ 1 >= 1

Dấu bằng xảy ra <=> (x-1)2 = 0

                         <=> x - 1  = 0

                         <=> x       = 1

Vậy...

b, B = x2 - 4x + y2- 8y + 6

    B =(x2 - 4x + 4) + (y2- 8y + 16) - 14

    B =(x - 2)2 + (y - 4)2 -14 >= -14

Dấu bằng xảy ra + <=> x - 2 = 0

                            <=> x     = 2

                         +  <=> y - 4 = 0      

                             <=> y      = 4

Vậy ...

Bài này dài vc sao làm hết dc.