K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2022

GTLN thật sao bạn?
Xin lỗi bạn nhiều nhưng mình chỉ tìm được GTNN của P thôi.

\(P=\frac{3x}{2}+\frac{1}{x+1}\)\(=\frac{3x+3}{2}+\frac{1}{x+1}-\frac{3}{2}\)\(=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\)

Vì \(x>-1\Leftrightarrow x+1>0\)nên \(\frac{3\left(x+1\right)}{2}>0\)và \(\frac{1}{x+1}>0\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(\frac{3\left(x+1\right)}{2}\)và \(\frac{1}{x+1}\), ta có:

\(\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)

\(\Leftrightarrow P\ge\sqrt{6}-\frac{3}{2}=\frac{2\sqrt{6}-3}{2}\)

Dấu "=" xảy ra khi \(\frac{3\left(x+1\right)}{2}=\frac{1}{x+1}\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Leftrightarrow x+1=\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}\)(vì \(x+1>0\))

\(\Leftrightarrow x=\frac{-3+\sqrt{6}}{3}\)

Vậy GTNN của P là \(\sqrt{6}\)khi \(x=\frac{-3+\sqrt{6}}{3}\)

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

21 tháng 11 2021

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

12 tháng 4 2020

Ta có : 

\(P=\frac{3x^2-4x}{\left(x-1\right)^2}\)

\(=\frac{3x^2-6x+3}{\left(x-1\right)^2}+\frac{2x-2}{x-1}-\frac{1}{\left(x-1\right)^2}\)

\(=3+\frac{2}{x-1}-\frac{1}{\left(x-1\right)^2}\)

\(=-\left(\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.1+1-4\right)\)

\(=-\left(\frac{1}{x-1}-1\right)^2+4\)

Ta có : 

\(\left(\frac{1}{x-1}-1\right)^2\ge0\)

\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2\le0\)

\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2+4\le4\)

Dấu " = " xảy ra khi \(\frac{1}{x-1}=1\) hay x=2 

Vậy GTLN của P là 4, đạt đc khi x = 2 

 
12 tháng 4 2020

Ta có : P = \(\frac{3x^2-4x}{\left(x-1\right)^2}=\frac{3\left(x^2-2x+1\right)+2.\left(x-1\right)-1}{\left(x-1\right)^2}=3+\frac{2}{x-1}-\frac{1}{\left(x-1^2\right)}\)

               =\(-\left(\frac{1}{\left(x-1\right)^2}-\frac{2}{x-1}+1\right)+4=-\left(\frac{1}{x-1}-1\right)^2+4\le4\)

Dấu "=" xảy ra <=> \(\frac{1}{x-1}-1=0\Leftrightarrow x-1=1\Leftrightarrow x=2\)

Vậy Max(P) = 4 <=> x = 2

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

18 tháng 7 2015

\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)

Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)

\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)

Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)

Vậy GTNN của A là 1.

\(B=\frac{-8}{3x^2+1}\)

Cách 1:

\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.

Cách 2:

\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)

+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)

+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)

\(\Rightarrow-8\le B<0\text{ (do }B\ne0\text{)}\)

=> B không có GTLN.

2 tháng 3 2020

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

29 tháng 5 2017

từ giả thiết ta suy ra \(\sqrt[3]{x^2y^2z^2}\ge3\)

lại có x2 + 2yz = x2 + yz + yz \(\ge\)3\(\sqrt[3]{x^2y^2z^2}\)\(\ge\)9

nên \(\frac{1}{x^2+2yz}\le\frac{1}{9}\)

tương tự với 2 số còn lại nên ta được P \(\le\frac{1}{3}\)

dấu "=" xảy ra khi x = y = z = \(\sqrt{3}\)

20 tháng 9 2020

\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)

\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)

Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)