Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: ĐKXĐ: x<>1
\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)
\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)
f'(x)=0
=>x^2-2x=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
1:
\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)
=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)
f'(x)=0
=>\(\left(x-2\sqrt{2}\right)^2=0\)
=>\(x-2\sqrt{2}=0\)
=>\(x=2\sqrt{2}\)
a) Với x bất kì và \(h = x - {x_0}\), ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_0} + h}} - {e^{{x_0}}}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_o}}}\left( {{e^h} - 1} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = {e^{{x_0}}}\end{array}\)
Vậy hàm số \(y = {e^x}\) có đạo hàm là hàm số \(y' = {e^x}\)
b) Ta có \({a^x} = {e^{x\ln a}}\,\)nên \(\left( {{a^x}} \right)' = \left( {{e^{x\ln a}}} \right)' = \left( {x\ln a} \right)'.{e^{x\ln a}} = {e^{x\ln a}}\ln a = {a^x}\ln a\)
Bạn xem lại đề, với a;b;c dương thì biểu thức P không tồn tại max nếu đề hoàn toàn đúng
Muốn P tồn tại max thì a;b;c cần không âm (nghĩa là có thể bằng 0)
a) Với x > 0 bất kì và \(h = x - {x_0}\) ta có
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {{x_0} + h} \right) - \ln {x_0}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}.{x_0}}} = \mathop {\lim }\limits_{h \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{\ln \left( {1 + \frac{h}{{{x_0}}}} \right)}}{{\frac{h}{{{x_0}}}}} = \frac{1}{{{x_0}}}\end{array}\)
Vậy hàm số \(y = \ln x\) có đạo hàm là hàm số \(y' = \frac{1}{x}\)
b) Ta có \({\log _a}x = \frac{{\ln x}}{{\ln a}}\) nên \(\left( {{{\log }_a}x} \right)' = \left( {\frac{{\ln x}}{{\ln a}}} \right)' = \frac{1}{{x\ln a}}\)
\(\left(x+3\right)^2=x^2+6x+9\le x^2+\left(9x^2+1\right)+9=10\left(x^2+1\right)\)
Suy ra: \(P=\dfrac{x+3}{\sqrt{x^2+1}}\le\sqrt{10}\)
Vậy \(MaxP=\sqrt{10}\) (khi \(x=\dfrac{1}{3}\))
Tại sao \(x^2+6x+9\le x^2+\left(9x^2+1\right)+9\) vậy ạ?