Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỪ GT TA CÓ X1=2X2 HOẶC X1=-2X2
VÌ HỆ SỐ a*c<0 MỌI m THỎA MÃN
THEO HỆ THỨC VIET X1+X2=3
XÉT TRƯỜNG HỢP X1=2X2 \(\Rightarrow X_2=1;X_1=2\Rightarrow-2m^2=2\Rightarrow\) KHÔNG CÓ m
cmtt VỚI X1=-2X2 m=-3;3
a) Để \(\sqrt{3x+9}\) có nghĩa \(\Leftrightarrow3x+9\ge0\)
\(\Leftrightarrow3x\ge-9\)
\(\Leftrightarrow x\ge-3\)
Vậy ......
b) Để \(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\)
\(\Leftrightarrow-5x\ge10\)
\(\Leftrightarrow x\le-2\)
Vậy ....
c) Để \(\sqrt{\frac{-5}{-x-7}}\) có nghĩa \(\Leftrightarrow\frac{-5}{-x-7}=\frac{-5}{-\left(x+7\right)}=\frac{5}{x+7}\ge0\)
<=> x + 7 > 0
<=> x > -7
Vậy ......
+) Tính giá trị của x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)
=> (-2 + \(\sqrt{5}\)) 2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1 = 0
Vậy x2 + 4x - 1 = 0 tại x = -2 + \(\sqrt{5}\)
+) A = 3x3.(x2 + 4x - 1 ) - 5x3 - 23x2 - 7x + 1
= 3x3.(x2 + 4x - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1
= (3x3 - 5x).(x2 + 4x - 1 ) - 3.(x2 + 4x -1) - 2 = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2
Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2
+) A = (3x3 - 5x - 3).(x2 + 4x - 1 ) - 2 chia cho (x2 + 4x - 1 ) dư - 2
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)
b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)
\(=9x^2-36x+36-4x^2+8x-4\)
\(=5x^2-28x+32\)
\(=\left(x-5\right)\left(5x-8\right)\)
\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)
a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)
\(-3x^2+10x-3=0\)
\(\left(3-x\right)\left(3x-1\right)=0\)
\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
Ta có :
\(B+8=xy+yz+2zx+x^2+y^2+z^2\)
\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)
Do đó : \(B\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x^2=z^2=4\end{cases}}\)
ミ★ Đạt ★彡 làm đúng rồi nha.
Nhưng đoạn cuối bạn cần bổ sung là khi y = 0; x= -2 thì z=2 hoặc khi x=2 ;z=-2;y=0.
(x;z phải ngược dấu nha)
Ta có:
\(x=\frac{1}{2}.\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}=\frac{\sqrt{2}-1}{2}\)
\(\Rightarrow x\left(x+1\right)=\frac{\sqrt{2}-1}{2}.\frac{\sqrt{2}+1}{2}=\frac{1}{4}\)
Thế vô bài toán ta được
\(A=\left(4x^5+4x^4-5x^3+5x-2\right)^{2016}+2017\)
\(=\left(4x^4\left(x+1\right)-5x^3+5x-2\right)^{2016}+2017\)
\(=\left(-4x^3+5x-2\right)^{2016}+2017\)
\(=\left(\left(-4x^3-4x^2\right)+\left(4x^2+4x\right)+x-2\right)^{2016}+2017\)
\(=\left(-x+1+x-2\right)^{2016}+2017\)
\(=\left(-1\right)^{2016}+2017=2018\)
\(\sqrt{\dfrac{3x^2-3x-2x+2}{4x^2-12x+9}}=\sqrt{\dfrac{\left(3x-2\right)\left(x-1\right)}{\left(2x-3\right)^2}}\)
đk \(\left\{{}\begin{matrix}\left(3x-2\right)\left(x-1\right)>0\\2x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x< \dfrac{2}{3}\\x\ne\dfrac{3}{2}\end{matrix}\right.\)