K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

y = −2 x 2  + 7x − 5. TXĐ: R

y′ = −4x + 7, y′ = 0 ⇔ x = 7/4

y′′ = −4 ⇒ y′′(7/4) = −4 < 0

Vậy x = 7/4 là điểm cực đại của hàm số và y CD  = 9/8

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

31 tháng 3 2017

Xét hàm số : y = x4 – 2x2 + 2

Có đạo hàm là: y’ = 4x3 – 4x = 0 ⇔ x = 0, x = 1, x = -1

Đạo hàm cấp hai: y’’ = 12x2 – 4

y’’(0) = -4 < 0 ⇒ điểm cực đại xCD =0

y’’(-1) = 8 > 0, y’’(-1) = 8 > 0

⇒ các điểm cực tiểu xCT = -1, xCT = 1


16 tháng 10 2015

ta tính \(y'=\frac{x^2+1-2x^2}{\left(x^2+1\right)^2}=\frac{1-x^2}{\left(x^2+1\right)^2}\)

ta giải phương trình y'=0

suy x=1;x=-1

ta tính \(y''=\frac{-2x\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(1-x^2\right)}{\left(x^2+1\right)^4}=\frac{-2x\left(x^2+1\right)-4x\left(1-x^2\right)}{\left(1+x^2\right)^3}=\frac{2x^3-6x}{\left(1+x^2\right)^3}=\frac{-2x\left(x^2+2\right)}{\left(1+x^2\right)^3}\)

ta có \(y''\left(1\right)=-3<0\)hàm số đạt cực đại tại x=1

\(y''\left(-1\right)=3>0\)hàm số đạt cực tiểu tại x=-1

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)