K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

a) \(\frac{x}{3}=-\frac{2}{y}\)

Vì \(\frac{x}{3}=-\frac{2}{y}\)

\(\Rightarrow xy=\left(-2\right)\cdot3\)

\(\Rightarrow xy=-6\)

\(\Rightarrow\)x,y là ước nguyên của -6

Ta có ước nguyên của -6 là: 1; -1; 2; -2; 3;-3; 6;-6

Ta có bảng sau

x1-12-23-36-6
y-66-33-22-11

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;-6\right);\left(-1;6\right);\left(2;-3\right);\left(-2;3\right);\left(6;-1\right);\left(-6;1\right)\right\}\)

Vậy .............................................................................................................................................

3 tháng 9 2018

ai giúp mik câu b với ạ

8 tháng 8 2018

\(^{\text{(x+1+y+1+x+y)}^2}\)=2

\(^{\text{(x+1+y+1+x+y)}^2}\) =\(^{2^2}\)

x+1+y+1+x+y=2

(x+x)+(y+y)+(1+1)=2

x.2+y.2+2=2

2.(x+y+1)=2

x+y+1=2:2

x+y+1=1

x+y=1-1

x+y=0

=>x;y=0

19 tháng 2 2021

2011||x2−y|−8|+y2−1=12011||x2−y|−8|+y2−1=1

⇔||x2−y|−8|+y2−1=0⇔||x2−y|−8|+y2−1=0

⇔||x2−y|−8|+y2=1⇔||x2−y|−8|+y2=1

Do x;y∈Z⇒||x2−y|−8|∈N;y2∈Nx;y∈Z⇒||x2−y|−8|∈N;y2∈N

Do y∈Z⇒y2y∈Z⇒y2 là số chính phương

Mà 1=0+11=0+1 nên ta có 22 trường hợp xảy ra

-Trường hợp 1: {||x2−y|−8|=1(1)y2=0(2){||x2−y|−8|=1(1)y2=0(2) 

(2)⇔y=0(2)⇔y=0

Thay yy vào (1)(1) ta được: 

||x2−0|−8|=1⇔||x2|−8|=1||x2−0|−8|=1⇔||x2|−8|=1

⇔|x2−8|=1⇔[x2−8=1x2−8=−1⇔|x2−8|=1⇔[x2−8=1x2−8=−1

⇔[x2=9x2=7⇔[x=±3x=±√7⇔[x2=9x2=7⇔[x=±3x=±7

Mà x∈Z⇒x=±3x∈Z⇒x=±3

-Trường hợp 2:

{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1{||x2−y|−8|=0(3)y2=1(4)⇔{|x2−y|−8=0(3)y=±1 

+Nếu y=1,y=1, thay vào (3)(3) ta được:

|x2−1|−8=0⇔|x2−1|=8|x2−1|−8=0⇔|x2−1|=8

⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)⇔[x2−1=8x2−1=−8⇔[x2=9x2=−7(loại)

⇔x2=9⇔x=±3⇔x2=9⇔x=±3 (thỏa mãn)

+Nếu y=−1,y=−1, thay vào (3)(3) ta được:

| x2+1 | = 0⇔x2+1=8⇔x2=7|x2+1|−8=0⇔x2+1=8⇔x2=7

⇔x=±√7⇔x=±7 (không thỏa mãn)

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

4 tháng 5 2018

Trả lời

\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)

\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)

\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)

Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)

\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Ta có bảng giá trị

x-3124
y+3421
x457
y1-1-2

Đối chiếu điều kiện \(x,y\inℕ\)

Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)