Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô Huyền giải nhầm rồi.
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)
\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)
\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương
Xét \(y\ge0\)
\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)
\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)
\(\Leftrightarrow y=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Tương tự cho trường hợp còn lại
\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)
\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)
\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)
\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)
TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)
TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)
\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)
\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)
Từ đây bạn xét các trường hợp và giải ra nghiệm.