Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
a) ta có : \(\left(x-\dfrac{1}{3}\right).\left(x+\dfrac{2}{3}\right)>0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>\dfrac{1}{3}\) hoặc \(x< \dfrac{-2}{3}\)
b) \(\left(x+\dfrac{3}{5}\right).\left(x+1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-3}{5}\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-3}{5}\\x>-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-1< x< \dfrac{-3}{5}\end{matrix}\right.\) vậy \(-1< x< \dfrac{-3}{5}\)
\(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\Rightarrow x>\dfrac{1}{3}\\x+\dfrac{2}{3}>0\Rightarrow x>-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\Rightarrow x< \dfrac{1}{3}\\x+\dfrac{2}{3}< 0\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x>-\dfrac{2}{3}\) hoặc \(x< \dfrac{1}{3}\)
\(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\Rightarrow x< -\dfrac{3}{5}\\x+1>0\Rightarrow x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\Rightarrow x>-\dfrac{3}{5}\\x+1< 0\Rightarrow x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< -\dfrac{3}{5}\)
\(\left(x-1\right)\left(x+5\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\left(x-1\right)\left(x+5\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+5< 0\Rightarrow x< -5\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+5>0\Rightarrow x>-5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< 1\)
câu dễ tự làm
\(\Rightarrow x>-5;x< -5\)
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
Nhiều quá, từng bài 1 nhé, bài nào làm được, tớ sẽ cố gắng.
bài 2:
a) \(x>2x\Leftrightarrow x-2x>0\Leftrightarrow-x>0\Leftrightarrow x< 0\)
Kl: x<0
b) \(a+x< a\Leftrightarrow x< 0\)
Kl: x<0
c) \(x^3>x^2\Leftrightarrow x^3-x^2>0\Leftrightarrow x^2\left(x-1\right)>0\) (*)
Mà x^2 > 0 \(\Rightarrow\) (*) \(\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Kl: x>1
Câu 4:
a) \(1-2x< 7\Leftrightarrow2x>-6\Leftrightarrow x>3\)
Kl: x>3
b) \(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
Kl: x>2 hoặc x<1
c) \(\left(x-2\right)^2\left(x+1\right)\left(x+4\right)< 0\Leftrightarrow\left(x+1\right)\left(x+4\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\\x+4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\\x+4>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-1\\x< -4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -1\\x>-4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-1< x< -4\left(vô-lý\right)\\-4< x< -1\end{matrix}\right.\) \(\Leftrightarrow-4< x< -1\)
Kl: -4<x<-1
d) ĐK: x khác 9\(\dfrac{x^2\left(x+3\right)}{x-9}< 0\Leftrightarrow x^2\left(x+3\right)\left(x-9\right)< 0\Leftrightarrow\left(x+3\right)\left(x-9\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-9< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-9>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x>9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-3< x< 9\left(N\right)\\9< x< -3\left(vô-lý\right)\end{matrix}\right.\) \(\Leftrightarrow-3< x< 9\)
Kl: -3<x<9
e) Đk: x khác 0
\(\dfrac{5}{x}< 1\Leftrightarrow\dfrac{5}{x}< \dfrac{5}{5}\Leftrightarrow x>5\left(N\right)\)
KL: x >5
f) ĐK: x khác 1
\(\dfrac{2x-5}{x-1}< 0\Leftrightarrow\left(2x-5\right)\left(x-1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5>0\\x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5< 0\\x-1>0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x>1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{2}< x< 1\left(vô-lý\right)\\1< x< \dfrac{5}{2}\left(N\right)\end{matrix}\right.\)
Kl: 1< x< 5/2
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(\text{a) }\left(x-1\right)\left(x-5\right)>0\\ \text{ Để }\left(x-1\right)\left(x-5\right)>0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ cùng dấu }\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên dương }\Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5>0\Rightarrow x>5\end{matrix}\right.\Rightarrow x>5\\ \text{+) Xét }x-1\text{ và }x-5\text{ là số nguyên âm }\Rightarrow\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow x< 1\\ \text{Vậy }\left(x-1\right)\left(x-5\right)>0\text{ khi }x< 1\text{ hoặc }x>5\)
\(\text{b) }\left(x-1\right)\left(x-5\right)< 0\\ \text{ Để }\left(x-1\right)\left(x-5\right)< 0\text{ thì }\Rightarrow x-1\text{ và }x-5\text{ trái dấu }\\ \text{ Mà }x-1>x-5\\ \Rightarrow\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x-5< 0\Rightarrow x< 5\end{matrix}\right.\Rightarrow1< x< 5\\ \text{ Vậy }\left(x-1\right)\left(x-5\right)< 0\text{ khi }1< x< 5\)
\(\text{c) }\dfrac{3}{4}-\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{4}\left|x-\dfrac{1}{7}\right|=\dfrac{1}{2}\\ \Leftrightarrow\left|x-\dfrac{1}{7}\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{7}=-2\\x-\dfrac{1}{7}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{13}{7}\\x=\dfrac{15}{7}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{13}{7}\text{ hoặc }x=\dfrac{15}{7}\)
\(\text{d) }\left(x-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=-\dfrac{1}{4}\\x-\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{1}{4}\text{ hoặc }x=\dfrac{3}{4}\)
\(\text{e) }8\left(x+1\right)-2\left(2x+5\right)=0\\ \Leftrightarrow8x+8-4x+10=0\\ \Leftrightarrow\left(8x-4x\right)+\left(8+10\right)=0\\ \Leftrightarrow4x+18=0\\ \Leftrightarrow4x=-18\\ \Leftrightarrow x=-\dfrac{9}{2}\\ \text{Vậy }x=-\dfrac{9}{2}\)
\(\text{g) }\left(6x-1\right)-\left(x+8\right)=0\\ \Leftrightarrow6x-1-x-8=0\\ \Leftrightarrow\left(6x-x\right)-\left(1+8\right)=0\\ \Leftrightarrow5x-9=0\\ \Leftrightarrow5x=9\\ \Leftrightarrow x=\dfrac{9}{5}\\ \text{Vậy }x=\dfrac{9}{5}\)
\(\text{h) }\left|7x-\dfrac{1}{4}\right|=1\\ \Leftrightarrow\left[{}\begin{matrix}7x-\dfrac{1}{4}=-1\\7x-\dfrac{1}{4}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-\dfrac{3}{4}\\7x=\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{28}\\x=\dfrac{5}{28}\end{matrix}\right.\\ \text{Vậy }x=-\dfrac{3}{28}\text{ hoặc }x=\dfrac{5}{28}\)
\(\text{q) }-2x-3=-x+7\\ \Leftrightarrow-2x-3-\left(-x+7\right)=0\\ \Leftrightarrow-2x-3+x-7=0\\ \Leftrightarrow\left(-2x+x\right)-\left(3+7\right)=0\\ \Leftrightarrow-x-10=0\\ \Leftrightarrow-x=10\\ \Leftrightarrow x=-10\\ \text{ Vậy }x=-10\)
a) \(x=\pm2,1\)
b) \(x=-\dfrac{3}{4}\)
c) \(\)Không tồn tại x
d)\(x=0,35\)
a, \(\left|x\right|=2,1\)
=> \(x=\pm2,1\)
b, \(\left|x\right|=\dfrac{3}{4},x< 0\)
=> \(x=\dfrac{3}{4}\)
c, \(\left|x\right|=-1\dfrac{2}{5}\)
=> Không tồn tại x.
d, \(\left|x\right|=0,35,x>0\)
=> \(x=0,35\)
Bài 1:
a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)
= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)
b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)
= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)
\(\text{Câu 1 : }\) Tính
\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)
\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)
\(a,\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\left(-5< 0\right)\Leftrightarrow x>3\\ b,\dfrac{3-x}{x^2+1}\ge0\Leftrightarrow3-x\ge0\left(x^2+1>0\right)\Leftrightarrow x\le3\\ c,\dfrac{\left(x-1\right)^2}{x-2}< 0\Leftrightarrow x-2< 0\left[\left(x-1\right)^2\ge0\right]\Leftrightarrow x< 2\)