Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=t\Leftrightarrow\hept{\begin{cases}x=2t\\y=\frac{3}{2}t\\z=\frac{4}{3}t\end{cases}}\)
\(xyz=2t.\frac{3}{2}t.\frac{4}{3}t=4t^3=-108\Leftrightarrow t^3=-27\Leftrightarrow t=-3\)
\(\Leftrightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\\z=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.
a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)
\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)
\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)
\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\Rightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Mà xyz = -108 => \(2k\cdot\frac{3}{2}k\cdot\frac{4}{3}k=-108\Rightarrow4k^3=-108\Rightarrow k^3=-27\Rightarrow k=-3\)
\(\Rightarrow\hept{\begin{cases}x=2.\left(-3\right)=-6\\y=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
Vậy x = -7, y = -9/2 , z = -4