Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 3x2 - 50x = 0 <=> x(3x - 50) = 0
=> x = 0 hoặc 3x - 50 = 0 hay x = 50/3
2. 23x + 2 = 4x + 5 <=> 23x + 2 = 22x + 10
=> 3x + 2 = 2x + 10 => x = 8
3. C = (x2 + 13)2 =( x4 + 26x2) + 169
Ta thấy: ( x4 + 26x2)\(\ge\)0 nên ( x4 + 26x2) + 169 \(\ge\) 0 + 169
dấu bằng xảy ra khi ( x4 + 26x2) = 0 => GTNN của C = 169
4. \(\frac{3}{x+1}\)có giá trị nguyên khi và chỉ khi 3 chia hết cho x + 1
hay x + 1 \(\in\)Ư(3)={ -1;2;-3;3}
x \(\in\){-2;1;-4;2}
Vậy số nguyên x nhỏ nhất là - 4 để \(\frac{3}{x+1}\) có giá trị nguyên
Giá trị của x thỏa mãn:
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}.x-4}\)
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{2\left(\frac{3}{2}x-4\right)}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=> \(x+4=3x-8\)
=> \(3x-8-x=4\)
=> \(2x-8=4\)
=> \(2x=12\)
=> \(x=\frac{12}{2}=6\)
\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=>\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=>-x+4=3x-8
<=>4x=12
<=>x=3
Vậy x=3
\(\left(\frac{1}{4}\right)^{\frac{3}{2}-4}=\left(\frac{1}{2}\right)^{2.\left(\frac{3}{2}-4\right)}=\left(\frac{1}{2}\right)^{-1}\)
; do đó -x + 4 = -1
=> -x = -1 - 4 = -5
=> x = 5
Để \(\left(2x+1\right)\left(3x-\frac{9}{2}\right)=0\) thì 2x+1=0 hoặc 3x-9/2=0
TH1: 2x+1=0
=> 2x=-1
=> x=-1/2
TH2: 3x-9/2=0
=> 3x=9/2
x=9/2:3=3/2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)
Do đó không tồn tại x thỏa mãn.