K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

lập bảng xét dấu, ta có

x           1         2        3          4
x-1 -         0    +        +         +           +
x-2 -               -    0   +         +           +
x-3 -               -         -     0   +           +
x-4 -               -         -          -     0     +
(x-1)(x-2)(x-3)(x-4)+        0     -    0    +    0   -     0     +

vậyđể x thỏa mãn biểu thức thì:

1<x<2 hoặc3<x<4

19 tháng 2 2022

a, \(A=\left(x+2y\right)^2-x+2y\)

Thay x = 2 ; y = -1 ta được 

\(A=\left(2-2\right)^2-2-2=-4\)

b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)

Thay x = 1 vào B ta được \(B=3+8-1=10\)

c, Thay x = 1 ; y = -1 ta được 

\(C=3,2.1.\left(-1\right)=-3,2\)

d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được 

\(D=3.9-5\left(-1\right)+1=27+5+1=33\)

19 tháng 2 2022

thay x=2,y=-1 vào biểu thức A ta có;

 A=(2+2.(-1)^2-2+2.(-1)

A=(2+-2)^2-2+-2

A=0-2+-2

A=-4

b)

 (x^2+4)(x-1)=0

 suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)

(+)x-1=0

    x   =1

thay x=1 vào biểu thức B ta có;

B=3.1^2+8.1-1

B=3.1+8-1

B=3+8-1

B=10

c)thay x=1 và y=-1 vào biểu thức C ta có;

C=3,2.1^5.(-1)^3

C=3,2.1.(-1)

C=(-3,2)

d)giá trị tuyệt đối của 3=3 hoặc (-3)

TH1;thay x=3:y=-1 vào biểu thức d ta có;

D=3.3^2-5.(-1)+1

D=3.9-(-5)+1

D=27+5+1

D=33

 

    

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$

13 tháng 1 2022

Giải : x+1/3 = 2/3

tiếp : x         = 2/3 - 1/3 

kết  : x         = 1/3

 

 

DD
21 tháng 7 2021

\(5x-2y=1\)(1)

Có \(\left(5,2\right)=1\)là ước của \(1\)nên phương trình có vô số nghiệm. 

Thấy \(\left(1,2\right)\)là một nghiệm của (1) nên nghiệm tổng quát của (1) là: 

\(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)

\(P=3x+5y=3\left(1-2t\right)+5\left(2+5t\right)=13+19t\)

Dễ thấy \(P\)không có giá trị nhỏ nhất do \(t\inℤ\)

Nếu đổi điều kiện là \(x,y\)là các số tự nhiên. 

Ta có: \(\hept{\begin{cases}x=1+\frac{-2}{1}t=1-2t\\y=2+\frac{5}{1}t=2+5t\end{cases}}\left(t\inℤ\right)\)suy ra \(\hept{\begin{cases}1-2t\ge0\\2+5t\ge0\end{cases}}\Leftrightarrow\frac{-2}{5}\le t\le\frac{1}{2}\)suy ra \(t=0\).

Khi đó \(P=3.1+5.2=13\)

NV
21 tháng 3 2023

\(x.P\left(x-1\right)=\left(x-2\right).P\left(x\right)\) (1)

Thay \(x=0\) vào (1) \(\Rightarrow0.P\left(-1\right)=-2.P\left(0\right)\Rightarrow P\left(0\right)=0\)

\(\Rightarrow x=0\) là 1 nghiệm của đa thức

Thay \(x=2\) vào (1):

\(2.P\left(1\right)=0.P\left(2\right)\Rightarrow P\left(1\right)=0\)

\(\Rightarrow x=1\) là 1 nghiệm của đa thức

\(\Rightarrow\) \(P\left(x\right)\) có ít nhất 2 nghiệm \(x=0;x-1\)

Mà bậc P(x) nhỏ hơn 4 nên P(x) tối đa có bậc 3

\(\Rightarrow P\left(x\right)=k.x.\left(x-1\right).\left(ax+b\right)\) với \(k\ne0\)

Thay vào (1)

\(\Rightarrow x.k\left(x-1\right)\left(x-2\right)\left(ax-a+b\right)=kx\left(x-1\right)\left(x-2\right)\left(ax+b\right)\)

\(\Rightarrow kx\left(x-1\right)\left(x-2\right)\left(ax-a+b-ax-b\right)=0\)

\(\Rightarrow kx\left(x-1\right)\left(x-2\right).\left(-a\right)=0\)

\(\Rightarrow a=0\)

\(\Rightarrow P\left(x\right)=a.x.\left(x-1\right)\) với a là số thực khác 0 bất kì

a, Thay x = 3 và y = -6 vào bt ta đc

\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)

9 tháng 2 2022

a) Thay x=3; y=-6

\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)

b) Thay x=-2; y=4

\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)

c, Thay x=0

\(5x^2+3x-1=5.0+3.0-1=-1\)

+) x=-1

\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)

+) \(x=\dfrac{1}{3}\)

\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)

\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)