Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Ta có \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\)
\(\frac{c}{1+d^2}\ge c-\frac{cd}{2}\)
\(\frac{d}{1+a^2}\ge d-\frac{ad}{2}\)
Lại có \(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}=\frac{4^2}{4}=4\)
Do đó \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge\left(a+b+c+d\right)-\frac{ab+bc+cd+da}{2}\)
\(\ge4-\frac{4}{2}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(a=b=c=d=1\)
Áp dụng bất đẳng thức Cô-si, ta có: \(\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{1+9a^2}=\left(a-\frac{9ab^2}{1+9b^2}\right)+\left(b-\frac{9bc^2}{1+9c^2}\right)+\left(c-\frac{9ca^2}{1+9a^2}\right)\)\(\ge\left(a-\frac{9ab^2}{6b}\right)+\left(b-\frac{9bc^2}{6c}\right)+\left(c-\frac{9ca^2}{6a}\right)=\left(a+b+c\right)-\frac{3\left(ab+bc+ca\right)}{2}\)\(\ge\left(a+b+c\right)-\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = c = 1/3
Ta sẽ chứng minh: \(\sqrt{\frac{x^4+1}{2}}+\frac{4x^2}{x^2+1}\ge3x\)
Thật vậy: \(\Leftrightarrow\left(\sqrt{\frac{x^4+1}{2}}-x\right)+2\left(\frac{2x^2}{x^2+1}-x\right)\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}+2x}-\frac{2x}{x^2+1}\right]\ge0\)
Bây giờ ta quy về chứng minh: \(\frac{\left(x+1\right)^2}{2\sqrt{\frac{x^4+1}{2}}}\ge\frac{2x}{x^2+1}\Leftrightarrow\left(x^2+1\right)\left(x+1\right)^2\ge4x\left(\sqrt{\frac{x^4+1}{2}+x}\right)\)
\(\Leftrightarrow x^4+1+2x^3+2x\ge2x^2+4x\sqrt{\frac{x^4+1}{2}}\)
\(\Leftrightarrow\frac{x^4+1}{2}+x^3+x\ge x^2+2x\sqrt{\frac{x^4+1}{2}}\)
Bất đẳng thức trên đúng theo AM - GM:
\(\frac{x^4+1}{2}+x^3+x\ge\left(\frac{x^4+1}{2}+x^2\right)+x^2\ge2x\sqrt{\frac{x^4+1}{2}}+x^2\)
Vậy hoàn tất chứng minh trên nên ta có:
\(\sqrt{\frac{a^2+1}{2}}+\frac{4a}{a+1}\ge3\sqrt{a}\);\(\sqrt{\frac{b^2+1}{2}}+\frac{4b}{b+1}\ge3\sqrt{b}\)
\(\sqrt{\frac{c^2+1}{2}}+\frac{4c}{c+1}\ge3\sqrt{c}\); \(\sqrt{\frac{d^2+1}{2}}+\frac{4c}{d+1}\ge3\sqrt{d}\)
Cộng từng vế của các bđt trên. ta được: \(\text{Σ}_{cyc}\sqrt{\frac{a^2+1}{2}}\ge3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\)
\(-4\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\right)\)\(=3\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)-8\)
Dấu "=" xảy ra khi a = b = c = 1
Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:
\(P\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
Lại có:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)
\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=9\)
Mặt khác \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)
\(\Rightarrow\frac{1}{ab+bc+ca}\ge3\)\(\Rightarrow P_{Min}=30\)
Dấu = khi \(a=b=c=\frac{1}{3}\)
Áp dụng bđt Cosi ta có: \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2;\frac{b^2}{b+c}+\frac{b+c}{4}\ge2;\frac{c^2}{c+d}+\frac{c+d}{4}\ge2\)\(;\frac{d^2}{d+a}+\frac{d+a}{4}\ge2\)
Cộng theo vế và a+b+c+d=1 ta có đpcm
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{a^2}{a+b}=\frac{a+b}{4};\frac{b^2}{b+c}=\frac{b+c}{4};\frac{c^2}{c+d}=\frac{c+d}{4};\frac{d^2}{d+a}=\frac{d+a}{4}\\\\a=b=c=1\end{cases}}\)
\(\Leftrightarrow a=b=c=d=\frac{1}{4}\)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2
Không mất tính tổng quát, ta giả sử a là số nhỏ nhất, tức \(a\le b,a\le c,a\le d\) \(\Rightarrow a\le2\)
Khi đó \(a=1\) hoặc \(a=2\)
Dễ thấy \(a=1\) không thỏa mãn. Vậy \(a=2\)
Suy ra \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Nếu \(b,c,d>3\) thì \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{3^2}=\frac{1}{3}< \frac{3}{4}\) (vô lí)
Vậy trong 3 số b,c,d tồn tại ít nhất một số không lớn hơn 3
Ta giả sử b là số nhỏ nhất \(b\le3\) , khi đó \(b=2\) hoặc \(b=3\) (vì b = 1 không thỏa)
Dễ thấy nếu \(c,d>2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}>\frac{1}{2}\) (vô lí). Vậy \(c,d\le2\)
Với c = 1 hoặc d = 1 ta thấy ngay điều vô lí.
Với c = 2 thì d = 2 và ngược lại.
Dễ thấy nếu \(c,d>3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}=\frac{2}{9}< \frac{7}{18}\) (vô lí)
Vậy \(c,d\le3\)
Với c = 1 hoặc d = 1 thấy ngay điều vô lí
Với c= 2 thì d = 2 và ngược lại.
Với c = 3 thì d = \(\frac{5}{18}\) (loại vì \(d\notin N\))
Vậy : \(\left(a;b;c;d\right)=\left(2;2;2;2\right)\)
Cách này có vẻ chặt hơn :)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2.
Không mất tính tổng quát, ta giả sử a là số lớn nhất, tức \(a\ge b\ge c\ge d\)
\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{4}{a^2}\Rightarrow a^2\ge4\Rightarrow a\ge2\) (Vì a > 0)
Mà \(a\le2\) nên a = 2
\(\Rightarrow\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Vì \(b\ge c\ge d\) nên \(\frac{3}{4}=\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{3}{b^2}\Rightarrow b^2\ge4\Leftrightarrow b\ge2\) (vì b > 0)
Vậy b = 2
\(\Rightarrow\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Nếu \(c=1\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=1+\frac{1}{d^2}>\frac{1}{2}\) (vô lý)
Vậy c = 2 => d = 2
Kết luận : (a;b;c;d) = (2;2;2;2)