Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau.
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương.
Giải:
Ta có: \(\overline{a85b}⋮9\) hay \(a+b+13⋮9\)
\(\Rightarrow a+b=5\)
\(\Rightarrow a=\left(5+3\right):2=4\)
\(\Rightarrow b=5-4=1\)
Vậy a = 1, b = 4
b: \(=b\left(10-4+3\right)=9b⋮9\)
a: \(=5^m\cdot5-5-4m=5\cdot\left(5^m-1\right)-4m⋮4\)
a) A ⊂ C Ta có x chia hết cho 12 => x chia hết cho 3 và 4 => đpcm
B ⊂ C Ta có x chia hết cho 12 mà 12 chia hết cho 6 => đpcm
b) A ∪ B = { x ∈ N | x chia hết cho 4 và x chia hết cho 6 }
Vì x chia hết cho 6 và 4 => x chia hết 12 => đpcm
c ) Với x=4 thì x chia hết cho 4 thỏa mãn A
x không chia hết cho 6 không thỏa mãn B
=>A không phải là con của B.
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3
Ta phải chứng minh rằng Sk+1 3
Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.
Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n - 1
Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9
Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.
Ta phải chứng minh Sk+1 9.
Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9
Vậy (4n + 15n - 1) 9 với mọi n ε N*
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Ta có : a , b lẻ và a lớn hơn b
Ta có : a - b = Số chẵn ( Vì hai số lẻ trừ nhau ra số chẵn )
=> ĐPCM
T: Câu hỏi của Nguyen Thi Thu Huong - Toán lớp 6 - Học toán với OnlineMath