Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:
\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow a\ge\frac{1}{2}\)
2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)
3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)
4, Nếu m=0 => f(x)=-2x-1<0 (loại)
Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
\(y'=x^2-2mx+\left(m^2-m-1\right)\) (1)
Để hàm số có cực đại cực tiểu thì (1) có 2 nghiệm phân biệt
\(\Delta'=m+1>0\Rightarrow m>-1\)
Do \(a=1>0\) nên hoành độ điểm cực đại là nghiệm nhỏ hơn của pt (1)
\(\Rightarrow m-\sqrt{m+1}=1\Rightarrow m-1=\sqrt{m+1}\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1\\\left(m-1\right)^2=m+1\end{matrix}\right.\) \(\Rightarrow m=3\)
d/
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/
\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)
\(\Leftrightarrow m^2-2m+5< 0\)
\(\Leftrightarrow\left(m-1\right)^2+4< 0\)
Không tồn tại m thỏa mãn
f/
\(m=1\) pt vô nghiệm (thỏa mãn)
Với \(m\ne1\)
\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
Vậy \(0< m\le1\)
a: Ta có: \(\left(x+1\right)^2=0\)
=>x+1=0
hay x=-1
Thay x=-1 vào \(mx^2-\left(2m+1\right)x+m=0\), ta được:
m+2m+1+m=0
=>3m=-1
hay m=-1/3
b:x+2=0
nên x=-2
Thay x=-2 vào \(\dfrac{mx}{x+3}+3m-1=0\), ta được:
\(\dfrac{-2m}{-2+3}+3m-1=0\)
=>-2m+3m-1=0
=>m=1
d: 3x-2=0
=>x=2/3
Thay x=2/3 vào (m+3)x-m+4=0, ta được:
\(\dfrac{2}{3}\left(m+3\right)-m+4=0\)
\(\Leftrightarrow\dfrac{2}{3}m+2-m+4=0\)
=>6-1/3m=0
=>1/3m=6
hay m=18
Câu 1:
ĐKXĐ: x>=3
\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)
=>x-3=(2x-m)^2
=>4x^2-4xm+m^2=x-3
=>4x^2-x(4m-1)+m^2+3=0
Δ=(4m-1)^2-4*4*(m^2+3)
=16m^2-8m+1-16m^2-48
=-8m-47
Để phương trình có nghiệm thì -8m-47>=0
=>m<=-47/8
1.
Để $\left\{x\in\mathbb{R}|x^2-mx+n=0\right\}=\left\{1;2\right\}$ thì $x^2-mx+n=0$ có nghiệm $x=1$ và $x=2$Điều này xảy ra khi:
\(\left\{\begin{matrix} 1-m+n=0\\ 4-2m+n=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=3\\ n=2\end{matrix}\right.\)
2.
Để $\left\{x\in\mathbb{R}|x^3-mx^2+nx-2=0\right\}=\left\{1;2\right\}$ thì pt $x^3-mx^2+nx-2=0$ chỉ có 2 nghiệm $x=1$ và $x=2$Điều này xảy ra khi:
$x^3-mx^2+nx-2=(x-1)^2(x-2)$ (chọn) hoặc $x^3-mx^2+nx-2=(x-1)(x-2)^2$ (loại)
$\Leftrightarrow x^3-mx^2+nx-2=x^3-4x^2+5x-2$
$\Rightarrow m=4; n=5$