Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2x-x-5+x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{2}{x+5}\)
a) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{9x^2-4}\)
\(=\dfrac{3x+2-3x+2-3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
b) \(\dfrac{x+25}{2x^2-50}-\dfrac{x+5}{x^2-5x}-\dfrac{5-x}{2x^2+10x}\)
\(=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}-\dfrac{x+5}{x\left(x-5\right)}+\dfrac{x-5}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2\left(x+5\right)^2+\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{x^2+25x-2x^2-20x-50+x^2-10x+25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5x-25}{2x\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-5\left(x+5\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{-5}{2x\left(x-5\right)}\)
c) Ta có: \(\dfrac{1-2x}{2x}-\dfrac{4x}{2x-1}-\dfrac{3}{2x-4x^2}\)
\(=\dfrac{-\left(2x-1\right)^2-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(4x^2-4x+1\right)-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-4x^2+4x-1-8x^2+3}{2x\left(2x-1\right)}\)
\(=\dfrac{-12x^2+4x+2}{2x\left(2x-1\right)}\)
\(a,\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}-\dfrac{x-4}{1-x}\\ =\dfrac{x+2}{x-1}-\dfrac{x-3}{x-1}+\dfrac{x-4}{x-1}\\ =\dfrac{x+2-x+3+x-4}{x-1}\\ =\dfrac{x+1}{x-1}\)
\(b,\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{x^2-25}\\ =\dfrac{1}{x+5}-\dfrac{1}{x-5}+\dfrac{2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{x-5-x-5+2x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2x-10}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2}{x+5}\)
\(c,x+\dfrac{2y^2}{x+y}-y\\ =\dfrac{x\left(x+y\right)+2y^2-y\left(x+y\right)}{x+y}\\ =\dfrac{x^2+xy+2y^2-xy-y^2}{x+y}\\ =\dfrac{x^2+y^2}{x+y}\)
a/\(\left(x-1\right)\left(x^5+x^4+x^3+x^2+x+1\right).\)
\(=\left(x-1\right)\left[\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left[x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Câu b/ quên làm ạ :> Bù nè
b/ \(2\left(3x-1\right)\left(2x+5\right)-\left(4x-1\right)\left(3x-2\right)\)
\(=2\left(6x^2+15x-2x-5\right)-\left(12x^2-8x-3x+2\right)\)
\(=2\left(6x^2+13x-5\right)-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-\left(12x^2-11x+2\right)\)
\(=12x^2+26x-10-12x^2+11x-2\)
\(=37x-12\)
a, ĐỂ \(\frac{3x+3}{x^2-1}=\frac{3x+3}{\left(x+1\right)\left(x-1\right)}\) Xác định
\(\Rightarrow\left(x+1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\end{cases}}}\)
KL : \(x\ne\pm1\)
b ,
\(\frac{3x+3}{x^2-1}\)xác định
\(\Leftrightarrow x^2-1\ne0\Leftrightarrow x\ne\pm1\)
Vậy điều kiện xác định của \(\frac{3x+3}{x^2-1}\)là \(x\ne\pm1\)
\(\frac{3x+3}{x^2-1}=-2\)
\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=-2\)
\(\Leftrightarrow\frac{3}{x-1}=-2\)
\(\Leftrightarrow3=-2\left(x-1\right)\)
\(\Leftrightarrow\frac{-3}{2}=x-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(x=\frac{-1}{2}\)là giá trị cần tìm
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu
Mấy bài dài dài kia tí mình làm cho :)
( x - 1 )3 - x( x - 2 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1
= x3 - 3x2 + 3x - x3 + 4x2 - 4x
= x2 - x = x( x - 1 )
2x( 3x + 2 ) - 3x( 2x + 3 )
= 6x2 + 4x - 6x2 - 9x
= -5x
( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= 2x2 + 6x + 17
( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10
= 2x2 - 7x - 15 + 6x - 2x2 + x - 10
= -25
( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x
= x3 + 53 - x( x2 - 8x + 16 ) + 16x
= x3 + 125 - x3 + 8x2 - 16x + 16
= 8x2 + 125
( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )
= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2
= -12x - 24 = -12( x + 2 )
Tương tự ...
a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)
b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)
c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)
\(=\dfrac{2x-x-5+x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{2}{x+5}\)
Sai