K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2016

k_{3}=\frac{k_{1}\lambda _{1}}{\lambda _{3}}= \frac{4}{3}k_{1};  k_{2}=\frac{k_{1}\lambda _{1}}{\lambda _{2}}= \frac{32}{27}k_{1} \Rightarrow k_{1min}=27;k_{2min}=32;k_{3min}=36

Vị trí đầu tiên trùng nhau ứng với k_{1}=27;k_{2}=32;k_{3}=36. Vậy vị trí trùng đầu tiên ứng với vân sáng bậc 32 của ánh sáng lục.
vậy đáp án C. 32

31 tháng 5 2016

Khi các vân sáng trùng nhau:  \(k_1\lambda_1=\) \(k_2\lambda_2=\)\(k_3\lambda_3\)

 k10,64 = k20,54 = k30,48 <=> 64k1 = 54k2 = 48k3 <=> 32k1 = 27k2 = 24k3

BSCNN(32,27,24) = 864           

=> k1 = 27 ; k2 = 32 ; k3 = 36    

Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda\)1 trùng bậc 32 của \(\lambda\)2 trùng với bậc 36 của \(\lambda\)3

Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36    

\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)

 \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)

\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\)

Vậy vị trí này có:

k1 = kđỏ =  27 (ứng với vân sáng bậc 27)

k2 = klục = 32(ứng với vân sáng bậc 32)

k3 = klam = 36(ứng với vân sáng bậc 36)

Đáp án C 

7 tháng 5 2016

Khi các vân sáng trùng nhau:  \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

      \(k_10,64=k_20,54=k_30,48\Leftrightarrow64k_1=54k_2=48k_3\Leftrightarrow32k_1=27k_2=24k_3\)

  \(BSCNN\left(32,27,24\right)=864\Rightarrow k_1=27;k_2=32;k_3=36\)

Vân sáng đầu tiên có cùng màu với vân sáng trung tâm : là vị trí Bậc 27 của \(\lambda_1\) trùng bậc 32 của\(\lambda_2\) trùng với bậc 36 của \(\lambda_3\)

Ta sẽ lập tỉ số cho đến khi: k1 = 27 ; k2 = 32 ; k3 = 36    

\(\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{27}{32}\)

\(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{8}{9}=\frac{16}{18}=\frac{24}{27}=\frac{32}{36}\)

\(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{4}=\frac{6}{8}=\frac{9}{12}=\frac{12}{16}=\frac{15}{20}=\frac{18}{24}=\frac{21}{28}=\frac{24}{32}=\frac{27}{36}\) 

Vậy vị trí này có:

\(k_1=k_{đỏ}=27\)     (ứng với vân sáng bậc 27)

\(k_2=k_{lục}=32\)    (ứng với vân sáng bậc 32)

\(k_3=k_{lam}=36\)    (ứng với vân sáng bậc 36)

\(\rightarrow\)C

12 tháng 1 2017

Đáp án A

O
ongtho
Giáo viên
23 tháng 1 2016

Giữa hai vân sáng gần nhau nhất cùng màu với vân trung tâm có 8 vân sáng màu lục tức là khoảng cách đó là \(\Delta x _{min}= 9i_{lục}.\)

=> \(9i_{lục}= k_2 i_{đỏ}=> 9\lambda_{lục}= k_2 \lambda_{đỏ}\)

=> \(\lambda_{lục} = \frac{k_2 \lambda_{đỏ}}{9}.\ \ (1)\)

                Mà       \(500 n m \leq \lambda_{lục} \leq 575nm.\)

Thay (1) vào <=> \(500 n m \leq \frac{k_2 \lambda_{đỏ}}{9} \leq 575nm.\)

<=> \(\frac{500.9}{720} \leq k_2 \leq \frac{575.9}{720}\)

<=> \(6,25 \leq k_2 \leq 7,1875\)

=> \(k_2 = 7=> (1): \lambda_{lục} = 560nm.\)

 

23 tháng 1 2016

 720nm = 0,72 μm 

giữa 2 vân sáng gần nhau nhất và cùng màu vs vân sáng trung tâm có 8 vân sáng màu lục => Tại vị trí trùng đó là VS bậc 9 của λlục 

Tại VT trùng nhau: x_kđỏ = x_9lục 
<=> kđỏ.λđỏ = 9.λlục 
<=> kđỏ/9 = λlục/λđỏ = λ/0,72 
=> λ = (0,72.kđỏ)/9 = 0,08.kđỏ (*) 

0,5 ≤ λ = 0,08.kđỏ ≤ 0,575 μm 
6,25 ≤ kđỏ ≤ 7,1875 
=> kđỏ = 7 
thế vào (*) λ = 0,56 (μm) = 560nm

đáp án : D

30 tháng 4 2016

Tóm tắt:

\(a=10^{-3}m\)

\(D=0,5m\)

\(\lambda_1=0,64\mu m\)

\(\lambda_2=0,6\mu m\)

\(\lambda_3=0,54\mu m\)

\(\lambda_4=0,48\mu m\)

\(\Delta x=?\)

Giải:

Khi vân sáng trùng nhau:  

\(k_1\lambda_1=\)\(k_2\lambda_2=\)\(k_3\lambda_3=\)\(k_4\lambda_4\)  \(\Leftrightarrow k_10,64\)\(=k_20,6\)\(=\)\(k_30,54\)\(=k_40,48\)

\(\Leftrightarrow\)\(k_164=k_260=k_354=k_448\)  \(\Leftrightarrow\) \(k_164=k_260=k_354=k_448\)

\(\Leftrightarrow k_132=k_230=k_327=k_424\)

BSCNN( 32;30;27;24 ) = 4320

\(k_1=\frac{4320}{32}=135\)

\(k_2=\frac{4320}{30}=144\)

\(k_3=\frac{4320}{27}=160\)

\(k_4=\frac{4320}{24}=180\)

Vậy \(\Delta x=135i_1=144i_2=160i_3=180i_4\)\(=0,0432m=4,32cm\)

\(\rightarrow D\)


7 tháng 1 2016

a. Bề rộng của 16 vân sáng là 15i, suy ra 15i=18mm --> i = 1,2 mm

Khoảng cách từ hai khe đến màn: \(D=\dfrac{ai}{\lambda}=\dfrac{1,2.1,2}{0,6}=2,4m\)

b. Bề rộng 21 vân sáng là 20 i', suy ra 20i' = 18mm ---> i'=0,9mm

Bước sóng: \(\lambda'=\dfrac{ai}{D}=\frac{1,2.0,9}{2,4}=0,45\mu m\)

c. Tại vị trí cách vân trung tâm x = 6mm

\(\Rightarrow x=6i=6,67i'\)

Nên tại vị trí này là vân sáng bậc 6 của bước sóng \(\lambda\)

30 tháng 4 2016

        \(\lambda_1\)(tím)\(=0,42\mu m\) , \(\lambda_2\) (lục) \(=0,56\mu m\) , \(\lambda_3\) (đỏ) \(=0,7\mu m\)

Vì giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 11 cực đại giao thoa của ánh sáng đỏ \(\Rightarrow k_{đỏ}=k_3=12\)

Từ BSCNN \(\Rightarrow k_1=k_{tím}=20\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 19 vân màu tím

  \(\Rightarrow k_{lục}=k_2=15\Rightarrow\) giữa hai vân sáng liên tiếp có màu giống như màu vân sáng trung tâm có 14 vân màu lục.

\(\rightarrow A\)

3 tháng 5 2016

Khi các vân sáng trùng nhau:   \(k_1\lambda_1=k_2\lambda_2=k_3\lambda_3\)

                                                  k10,4 = k20,5 = k30,6 \(\Leftrightarrow\) 4k1 = 5k2 = 6k3 

BSCNN(4,5,6) = 60

\(\Rightarrow\) k1 = 15 ; k2 = 12 ; k3 = 10 Bậc 15 của \(\lambda_1\) trùng bậc 12 của \(\lambda_2\) trùng với bậc 10 của \(\lambda_3\)

Trong khoảng giữa phải có:  Tổng số VS tính toán = 14 + 11 + 9 = 34

Ta xẽ lập tỉ số cho tới khi   k1 = 15 ; k2 = 12 ; k3 = 10

  - Với cặp \(\lambda_1;\lambda_2:\) \(\frac{k_1}{k_2}=\frac{\lambda_1}{\lambda_2}=\frac{5}{4}=\frac{10}{8}=\frac{15}{12}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k2 = 12  thì có tất cả 4 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k1 = 5 ; k2 = 4

Vị trí 3:  k1 = 10 ; k2 = 8                    => Trong khoảng giữa có 2 vị trí trùng nhau.

Vị trí 4:  k1 = 15 ; k2 = 12

  - Với cặp\(\lambda_2;\lambda_3:\)  \(\frac{k_2}{k_3}=\frac{\lambda_3}{\lambda_2}=\frac{6}{5}=\frac{12}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k2 = 12 ; k3 = 10  thì có tất cả 3 vị trí trùng nhau

Vị trí 1: VSTT  

Vị trí 2:  k2 = 6 ; k3 = 5                     \(\Rightarrow\) Trong khoảng giữa có 1 vị trí trùng nhau.

Vị trí 3:  k2 = 12 ; k3 = 10

- Với cặp \(\lambda_1;\lambda_3:\)    \(\frac{k_1}{k_3}=\frac{\lambda_3}{\lambda_1}=\frac{3}{2}=\frac{6}{4}=\frac{9}{6}=\frac{12}{8}=\frac{15}{10}\)     

      Như vậy:  Trên đoạn từ vân VSTT đến  k1 = 15 ; k3 = 10  thì có tất cả 6 vị trí trùng nhau

Vị trí 1: VSTT 

Vị trí 2:  k1 = 3   ;  k3 = 2

Vị trí 3:  k1 = 6   ;  k3 = 4

Vị trí 4:  k1 = 9   ;  k3 = 6                                     \(\Rightarrow\) Trong khoảng giữa có 4 vị trí trùng nhau.

Vị trí 5:  k1 = 12 ;  k3 = 8

Vị trí 6:  k1 = 15 ;  k3 = 10

Vậy tất cả có 2 + 1 +4 = 7 vị trí trùng nhau của các bức xạ.

Số VS quan sát được = Tổng số VS tính toán – Số vị trí trùng nhau       = 34 – 7 = 27 vân sáng.  

\(\rightarrow D\)   

3 tháng 5 2016

ok

4 tháng 2 2016

\( i = \frac{\lambda D}{a}= \frac{0,5.2}{0,5}=2mm.\)

Số vân sáng quan sát được trên màn là 

\(N_s = 2.[\frac{L}{2.i}]+1=17.\)

4 tháng 2 2016

c

31 tháng 10 2016

Trên màn có 19 vân sáng, suy ra bề rộng của trường giao thoa là: \(L=18.i\) (*)

Ta có: \(\dfrac{i}{i'}=\dfrac{\lambda}{\lambda'}=\dfrac{0,6}{0,4}=\dfrac{3}{2}\)

\(\Rightarrow i = \dfrac{3}{2}i'\), thay vào (*) ta có:

\(L=27.i'\)

Suy ra trên màn có 28 vân sáng.