Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7
\(\left(x+2\right)^4-4.\left(x+2\right)^2=0\)
\(\left(x+2\right)^2.\left[\left(x+2\right)^2-4\right]=0\)
\(\Rightarrow\left(x+2\right)^2=0\)hoặc \(\left(x+2\right)^2-4=0\)
\(x+2=0\)hoặc \(\left(x+2\right)^2=4\)
\(x=-2\)hoặc \(x+2=2\)hoặc \(x+2=-2\)
\(x=-2\)hoặc \(x=0\) hoặc \(x=-4\)
Để \(\left(2x+1\right)\left(3x-\frac{9}{2}\right)=0\) thì 2x+1=0 hoặc 3x-9/2=0
TH1: 2x+1=0
=> 2x=-1
=> x=-1/2
TH2: 3x-9/2=0
=> 3x=9/2
x=9/2:3=3/2
yugi sắp có phim mới rùi hay lém
tên của nó hình như là yugioh: dark ò the gì gì đó
**** nha
x=3,có thể x=0;1 theo mình nghĩ lad thế