Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
d) △ABC đều có: CD là đường cao \(\Rightarrow\)CD cũng là phân giác.
\(\Rightarrow\widehat{BCD}=\widehat{ACD}\).
Mà \(\left\{{}\begin{matrix}\widehat{BCD}=\widehat{IBC}\\\widehat{ACD}=\widehat{CIB}\end{matrix}\right.\) (DC//BI)
\(\Rightarrow\widehat{IBC}=\widehat{CIB}\)
\(\Rightarrow\)△BCI cân tại C.
mình mới nghĩ được đến đây, rất xin lỗi bạn, vẫn còn ý đầu của câu d, nếu mình nghĩ ra sẽ làm giúp bạn nha
B C A H D K I
Xét tam giác BDI có: IK và DH là 2 đường cao; IK cắt DH tại A => A là trực tâm của tam giác DIB => BA vuông góc với ID
Mà BA vuông góc với BC (do tam giác ABC vuông tại B)
=> BC // ID => góc BCA = góc IDC (do ở vị trí SLT) (1)
+) Để tam giác BID đều thì tam giác BID cân tại D và góc BDI = 60o
tam giác BDI cân tại D <=> DH là đường cao đồng thời là đường phân giác => góc IDC = góc CDB = góc BDI/2
mà góc BDI = 60 độ => góc IDC = 30o (2)
từ (1)(2) => góc BCA = 30o
Vậy để tam giác BDI đều thì tam giác ABC phải thoả mãn góc BCA = 30 độ
Chịu luôn mik cũng đang thắc mắc bài này