K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Ta có các cạnh AB; AC; BC tỉ lệ với 9; 12 và 15 

⇒ \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)

Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)

⇒ \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)

Ta có:

\(AB^2+AC^2=BC^2\)

\(\left(9k\right)^2+\left(12k\right)^2=\left(15k\right)^2\)

\(81k^2+144k^2=225k^2\)

\(225k^2=225k^2\)

Áp dụng định lý Pytago đảo

⇒ Tam giác ABC vuông tại A

5 tháng 2 2022

Tỉ lệ thôi mà nhỉ

Đặt AB/9=AC/12=BC/15=k

=>AB=9k; AC=12k; BC=15k

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

18 tháng 2 2016

Là tam giác vuông đó bạn

Vì 152=92+122

30 tháng 1 2016

Có vì 92 + 122 = 152

18 tháng 2 2021

\(TC:\)

\(BC^2=15^2=225\)

\(AB^2+AC^2=9^2+12^2=255\)

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow\Delta ABC\perp A\)

Vì AB,AC,BC tỉ lệ với 9;12;15 nên \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)

Đặt \(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}=k\)

nên \(\left\{{}\begin{matrix}AB=9k\\AC=12k\\BC=15k\end{matrix}\right.\)

Vì \(\left(15k\right)^2=\left(9k\right)^2+\left(12k\right)^2\)

nên \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

6 tháng 3 2022

6 tháng 3 2022

18 tháng 2 2019

có nha

18 tháng 2 2019

Ta có:  AB2 + AC2 = 92 + 122 = 81 + 144 = 225

             BC2 = 152 = 225

Ta thấy : AB2 + AC2 = BC2

Theo định lý Pi - ta - go đảo, t/giác ABC là t/giác vuông tại A.

18 tháng 2 2021

Xét : tam giác ABC có : BC = 15 cm 

=> BC2 = 152= 225 

lại có : AB = 9 cm, AC = 12 cm

=> AB2 + AC2= 92+ 122

=>  AB2 + AC2= 81 + 144

=>  AB2 + AC2= 225 cm

=> tam giác ABC cân tại A ( định lí Pi - ta - go đảo)

2 tháng 4 2020

Ta có : 5^2+12^2=169

            13^2=169

=>5^2+12^2=13^2

=> tam giác ABC là tam giác vuông

Vậy ..........