K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

tu ve hinh :

a; b, xet tamgiac AMF va tamgiac AME co : AM chung

goc AFM = goc AEM = 90 do MF | AC va ME | AB (gt)

goc FAM = goc EAM do AM la phan giac cua goc BAC (gt)

=> tamgiac AMF = tamgiac AME (ch - gn)               

=> AE = AF (dn)             (1)

AB = AC do tamgiac ABC can tai A (gt)

AE + EB = AB

AF + FC = AC

=> EB = FC 

xet tamgiac BEM va tamgiac CFM co : goc B = goc C do tamgiac ABC can tai A (gt) 

goc MEB = goc MFC do ...

=>  tamgiac BEM = tamgiac CFM  (cgv - gnk)

=> MB = MC

c, (1) => tamgiac AEF can tai E (dn)

=> goc AEF = (180 - goc BAC) : 2

tamgiac ABC can tai A (gt) => goc B = (180 - goc BAC) : 2

=> goc AEF = goc B ma 2 goc nay dong vi 

=> EF // BC (dh)

1 tháng 2 2019

                          Giải

Bạn tự vẽ hình

a; b, Xét \(\Delta AMF\) va \(\Delta AME\) có : AM chung

\(\widehat{AFM}=\widehat{AEM}=90^0\)  do MF\(\perp\)AC va ME\(\perp\)AB 

\(\widehat{FAM}=\widehat{EAM}\)do AM la phân giác của  \(\widehat{BAC}\)

\(\Rightarrow\Delta AFM=\Delta AME\)             

\(\Rightarrow AE=AF\)          (1)

AB = AC do \(\Delta ABC\) cân tại A 

AE + EB = AB

AF + FC = AC

\(\Rightarrow\) EB = FC 

Xét \(\Delta BEM\) và \(\Delta CFM\) có : \(\widehat{B}\)\(\widehat{C}\) do \(\Delta ABC\) cân tại A 

\(\Rightarrow\widehat{MEB}=\widehat{MFC}\)

\(\Rightarrow\Delta BEM=\Delta CFM\)

\(\Rightarrow\) MB = MC

c, Từ (1) suy ra \(\Delta AEF\)cân tại E

\(\Rightarrow\widehat{AEF}=\left(180-\widehat{BAC}\right)\div2\)

\(\Delta ABC\) cân tại A  \(\Rightarrow\)\(\widehat{B}\)= (180 - \(\widehat{BAC}\)) : 2

\(\Rightarrow\widehat{AEF}=\widehat{B}\) mà hai góc này đồng vị

\(\Rightarrow EF//BC\)

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

3 tháng 12 2018

nhanh mk k cho

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

18 tháng 2 2020

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

23 tháng 6 2022

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa