K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Áp dụng bđt AM-GM ta có: 

\(\sqrt[3]{\left(5x+3y\right).8.8}\le\frac{5x+3y+8+8}{3}\)

\(\sqrt[3]{\left(5y+3z\right).8.8}\le\frac{5y+3z+8+8}{3}\)

\(\sqrt[3]{\left(5z+3x\right).8.8}\le\frac{5z+3x+8+8}{3}\)

Cộng từng vế các đẳng thức trên ta được:

\(4N\le\frac{8\left(x+y+z\right)+48}{3}=24\)

\(\Rightarrow N\le6\)

Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)

29 tháng 12 2019

 x, y, z \(\ge\)0 là đúng đấy

và bạn có thể giải bằng BĐT Cauchy đc ko

8 tháng 11 2018

trước tiên mik xin l các bn vì mik vt sai đề:5x4-x2-6

5x4-x2-6

=5x4+5x2-(6x2+6)

=5x2(x2+1)-6(x2+1)

=(5x2-6)(x2+1)

ai ko hiểu thì ? đừng k sai nha!

13 tháng 5 2019

\(|3-5x|=7\)

\(\Rightarrow\orbr{\begin{cases}3-5x=7\\3-5x=-7\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-5x=4\\-5x=-10\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=2\end{cases}}\)

13 tháng 5 2019

\(\frac{x+2}{x-2}+\frac{x^2}{4-x^2}=\frac{-6}{x+2}\)

\(\Rightarrow\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{x^2}{\left(x-2\right)\left(x+2\right)}=\frac{-6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2+4x+4-x^2=-6x+12\)

\(\Rightarrow4x+4=-6x+12\)

\(\Rightarrow10x=8\)

\(\Rightarrow x=\frac{4}{5}\)

3 tháng 11 2018

\(x\) có 2 trường hợp:

TH1:

\(x=-\frac{\sqrt{-2+4\sqrt{2}}}{2}\)

TH2:

\(x=0\)

19 tháng 10 2021

a) \(x^2-xy+x-y\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b)\(x^2-2xy+y^2-z^2\)

\(=\left(x^2-2xy+y^2\right)-z^2\)

\(=\left(x-y\right)^2-z^2\)

\(=\left(x-y-z\right)\left(x-y+z\right)\)

c)\(5x-5y+ax-ay\)

\(=5\left(x-y\right)+a\left(x-y\right)\)

\(=\left(5+a\right)\left(x-y\right)\)

d)\(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a^2-y\right)\left(a-x\right)\)

Bài 2 : 

a) \(x^2-2xy-47^2+y^2\)

\(=x^2-2xy+y^2-47^2\)

\(=\left(x-y\right)^2-47^2\)

\(=\left(x-y-47\right)\left(x-y+47\right)\)

19 tháng 10 2021

Bài 1

a) x2 - xy + x - y

= x.(x - y) + (x - y) 

= (x - y) . (x + 1) 

b) x2 - 2xy + y2 - z2

= (x - y)2 - z2

= (x - y - z) . (x - y + z)

c) 5x - 5y + ax - ay

= 5 . (x - y) + a . (x - y)

= (5 + a ) . (x - y)

d) a3 - a2x - ay + xy 

=

a3−a2x−ay+xya3−a2x−ay+xy

=(a3−a2x)−(ay−xy)=(a3−a2x)−(ay−xy)

=a2(a−x)−y(a−x)=a2(a−x)−y(a−x)

=(a2−y)(a−x)

23 tháng 12 2018

\(a,x^2-x-6=0\)

\(x^2-3x+2x-6=0\)

\(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\left(x+2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(b,x^2+5x+6=0\)

\(x^2+2x+3x+6=0\)

\(x\left(x+2\right)+3\left(x+2\right)=0\)

\(\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

còn c, d nữa giúp mik luôn đi

Dạng này thì ta phân tích vế trái là 1 tích bên phải là 1 hằng số:
2x^2+3xy-2y^2=7 <=> 2x^2 + 4xy-xy-2y^2=7
<=> 2x(x+2y)- y(x+2y)=7 <=> (x+2y)(2x-y)=7
vì 7= 7.1=1.7=-1.(-7)=-7.(-1) nên ta có 4 trường hợp: 
x+2y 1 7 -7 -1
2x-y 7 1 -1 -7
x 0,2 1,8 -12,2 -3
y 0,4 2,6 -2,6 1
kết luận  loại loại loại thỏa mãn
Vậy x=-3; y=1

12 tháng 4 2018

Ta có:
2x^2+3xy-2y^2=7
\Leftrightarrow 2x^2-xy+4xy-2y^2=7
\Leftrightarrow x(2x-y)+2y(2x-y)=7
\Leftrightarrow (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
\Rightarrow 2(2x-y)+x+2y=15
\Rightarrow 5x=15 \Rightarrow x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y=1,x+2y=7 \Rightarrow x=1,8 , y=2,6 (KTM)
Nếu 2x-y=-1,x+2y=-7 \Rightarrow x=-1,8 , y=-2,6(KTM)
Nếu 2x-y=-7 , x+2y=-1\Rightarrow x=-3, y=1(tm)
Vậy (x;y) là (3;-1);(-3;1)

17 tháng 7 2020

Bạn cho đề kĩ hơn được không :)

17 tháng 7 2020

tính để ra kết quả